当前位置: 首页 > news >正文

网站的公告栏怎么做google浏览器官网下载

网站的公告栏怎么做,google浏览器官网下载,xyz域名的网站有哪些,wordpress 下载链接数据结构/C:红黑树 概念实现基本结构插入uncle为红色节点uncle为黑色节点 总代码展示 概念 红黑树是一种二叉搜索树,一般的二叉搜索会发生不平衡现象,导致搜索效率下降,于是学者们开始探索如何让二叉搜索树保持平衡,这…

数据结构/C++:红黑树

    • 概念
    • 实现
      • 基本结构
      • 插入
        • uncle为红色节点
        • uncle为黑色节点
    • 总代码展示


概念

红黑树是一种二叉搜索树,一般的二叉搜索会发生不平衡现象,导致搜索效率下降,于是学者们开始探索如何让二叉搜索树保持平衡,这种树叫做自平衡二叉搜索树。起初学者发明了AVL树,其通过一定算法保持了二叉搜索树的严格平衡,不久后Rudolf Bayer发明了红黑树,红黑树的平衡是较为宽泛的,为了保持平衡,红黑树付出的代价比AVL树更小。因此红黑树被更为广泛的使用,比如Java,C++,python中,使用的自平衡二叉搜索树都是红黑树,而不是AVL树。

如果想了解AVL树,可以看这篇博客:[数据结构/C++:AVL树]

红黑树的要求如下:

红黑树中,最长路径的长度不会超过最短路径的两倍

先解释一下路径的概念:从根走到nullptr
有不少人认为路径是从根走到叶子节点,这是不正确的。

红黑树用了五条规则来限制一棵树,从而达到以上要求:

  1. 每个节点不是红色就是黑色
  2. 根节点一定是黑色
  3. 不可以出现连续的红色节点(黑色可以连续出现)
  4. 每一条路径都包含相同数目的黑色节点
  5. nullptr视为黑色节点

只要满足以上五个条件,那么这棵树就是一颗红黑树,而且满足最长路径的长度不会超过最短路径的两倍。为什么呢?

五条规则中,我标红了3,4两条规则:

  1. 不可以出现连续的红色节点(黑色可以连续出现)
  2. 每一条路径都包含相同数目的黑色节点

由于每一条路径都必须包含相同数目的黑色节点,现在我们假设一棵红黑树,所有路径的黑色节点数目都是x,那么最短的路径长度就是全为黑色节点,长度为x
如果想让一条路径变长,那么就只能插入更多的红色节点(因为黑色节点数目相同),但是红色节点又不能连续出现,所以只能是黑红黑红黑红黑红黑红......这样排列,一个黑节点匹配一个红节点,因此最长路径的长度就是黑色节点的两倍2x
可以发现,红黑树通过这两条核心规则,保证了二叉搜索树的平衡。

比如以下就是一颗红黑树:
在这里插入图片描述

其最短路径为最左侧的路径,长度为2,即两个黑节点。
其最长路径为最右侧的路径,长度为4,即一红一黑排列。

要注意的是:不是所有的红黑树都会出现以上的全黑路径,或者一红一黑路径的,这只是极端情况

接下来我们通过实现红黑树,来了解红黑树是如何自平衡的:


实现

基本结构

首先我们要在节点中加入一个成员来表示节点的颜色,颜色有红黑和黑色两种状态,这里我使用枚举来区分两者:

enum Colour
{RED,BLACK
};

在某些红黑树的实现中,使用bool值来表示红黑颜色,这也是可以的,但是本博客以枚举来表示颜色。

节点类:

template<class K, class V>
struct RBTreeNode
{RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;pair<K, V> _kv;Colour _col;
};

_left:左子树
_right:右子树
_parent:父节点
_kv:节点存储的值
_col:该节点的颜色

节点类还需要一个构造函数进行初始化,现在的问题就是:新的节点要初始化为什么颜色?
先来考虑一下:插入红色节点和插入黑色节点,谁对红黑树影响大?
对于一棵红黑树,其所有路径的黑色节点数目都相同,如果我们在某一条路径末尾插入了黑色节点,那么整棵树的所有其它路径都会少一个黑节点。而插入红色节点只影响当前路径,所以新节点应该是红色节点

构造函数:

RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED)//初始化为红节点
{}

接着就是红黑树本体,类中只存储一个根节点_root

template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
private:Node* _root = nullptr;
}

现在我们有了红黑树的基本结构,接下来就实现它的插入操作:


插入

那么我们先写出当基本的二叉搜索树的插入代码逻辑,既然要插入,那么就要先找到合适的位置插入,代码如下:

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;//调整红黑树//......//......//......return true;
}

接下来,我先解析以上代码的逻辑:

if (_root == nullptr)
{_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点
}

如果我们插入节点时,根节点_root为空,说明当前整棵树都为空,那么我们直接插入值作为根节点即可,但是根节点必须是黑色节点,而我们新插入的节点是红色,所以要将其调整为黑色节点。


while (cur)
{if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}
}

以上代码,是在找到合适的插入位置,当key大于当前节点cur->_kv.first < kv.first,那么cur就向左寻找,反之向右寻找。如果当前节点值等于key,那么说明该节点已经存在,返回false代表插入失败。当我们的cur为空指针,说明已经找到了插入的节点,此时跳出循环进行插入。


cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;
elseparent->_right = cur;cur->_parent = parent;

到达此处,说明前面已经找到插入的位置了,而parent节点就是插入位置的父亲节点。根据key的大小,来判断插入到左边还是右边,插入完成后,再让新节点的_parent指向parent

至此我们就完成了插入操作,接下来就要根据不同情况对红黑树进行调整。


对于红黑树的插入,我们需要关注新节点的父亲parent,祖父grandfather,叔叔uncle三个节点:
在这里插入图片描述

  1. 先根据父亲节点的颜色,来判断是否需要调整

父亲节点为黑色:
在这里插入图片描述
新插入的节点默认为红色,所以新插入节点不会影响路径上黑色节点的数目,而parent是黑节点,我们也没有出现连续的红色节点,所以这种情况无需任何调整,直接插入就可以。

父亲节点为红色:
在这里插入图片描述
如果父亲节点为红色,我们就会出现连续的红色节点,这时我们就需要进行调整了

以上两种情况总结为:

parent为黑色,直接插入
parent为红色,插入后需要进行调整

parent为红色,我们就需要再根据uncle的颜色,将插入分类两类:uncle为红色以及uncle为黑色
在这里插入图片描述
值得注意的是:由于parent是红色节点,此时的grandfather一定是黑色节点,因为不能出现连续红色节点
这两种情况的操作不同,我们先看到uncle为红色的情况:


uncle为红色节点

uncle节点为红色,此时需要进行变色

变色如下:
在这里插入图片描述

由于新插入了红色的cur节点,此时parentcur出现了连续的红色节点,于是我们将parent改为黑色。但是此时以parent为根的所有路径就会多出一个黑节点,于是把grandfather变为红色,来抵消这个新增的黑节点。但是此时以uncle为根的路径又会少一个黑节点,于是把uncle变黑。

但是我们grandfather变为了红色,这有可能会影响到上一层节点,比如这样:
在这里插入图片描述
我们把grandfather变红之后,又出现了两个红色节点相连的情况,所以我们要写一个while循环,来反复向上检查。

当前代码如下:

while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在)
{Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle为黑节点 {//其它处理}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle为黑节点 {//其它处理}}
}_root->_col = BLACK;//在循环内部不判断root情况,统一处理

代码解析:

while (parent && parent->_col == RED)

该代码用于检测curparent的颜色,通过我们前面的推导,如果parent为红色才需要调整,因此进入循环的条件之一是parent为红色。另外的parent有可能为nullptr,此时我们要避免访问空指针,所以空指针也不能进循环


if (parent == grandfather->_left)
{  }
else
{ }

这一段代码是在检测parent 节点是grandfather的左子树还是右子树,这将涉及到我们如何找uncle以及下一种情况的调整,此时我们要分类讨论。当parent == grandfather->_left成立,那么uncle就是grandfather的右子树:Node* uncle = grandfather->_right;,反之就是左子树


if (uncle && uncle->_col == RED)
{parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;
}      

我们找到uncle后,如果uncle是红色,那么直接进行变色操作,把parentuncle的颜色变为黑色,grandfather变为红色。
随后由于我们的变色操作可能会影响上一层,此时调整节点,进入下一次while循环


在整个while循环外侧,还有一句代码:

_root->_col = BLACK;

这是因为我们在先前的while循环中,有可能出现对_root节点的操作,导致_root的颜色改变,而_root需要保持黑色。如果我们在循环内部,每一次都检测_root有点麻烦了,于是我们直接在每一次调整完节点后,把_root强行矫正为黑色

至此我们就讨论完了uncle为红色节点的情况,接下来我们就讨论uncle为黑色节点:


uncle为黑色节点

由于红黑树中,nullptr也算作黑色节点,所以uncle为黑色分为以下两种情况:

  1. uncle为空指针
  2. uncle不为空指针

图示如下:
在这里插入图片描述

如果 uncle为空指针,那么cur一定是新插入的节点

因为如果cur不是新插入的节点,那么curparent一定有一个原先是黑色节点,不然会出现连续的红色节点。但是如果curparent有一个是黑色节点,那么grandfather的左子树就比右子树多出一个黑节点,这就违背了红黑树规则。无论怎样,原先的树都不可能符合规则,所以cur一定是新插入的节点,破坏了规则

如果 uncle不为空指针,那么cur一定是从黑色节点变成的红色节点(不是新插入的)

因为如果uncle存在,那么grandfather的右子树就存在一个黑节点,而parent是红节点,所以curparent的右子树中都至少有一个黑节点,才能保证每一条路径黑节点数目相同。因此cur原先一定是黑节点,是因为cur下层插入了新节点,然后通过while循环向上走,影响到了当前层

对于这种uncle为黑色的情况,我们需要通过旋转+变色来维持红黑树。

旋转又分为单旋和双旋:

curparent的关系和parentgrandfather的关系一致时,需要进行单旋

比如我们刚刚的情况:
在这里插入图片描述
curparent的左子树,parentgrandfather的左子树,关系一致。
我们需要对其进行右单旋+变色:
在这里插入图片描述
这个旋转的算法在此我就不过多讲解了,可以去AVL树的博客中了解。我重点讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curC为根的路径,黑节点数目相同
同为grandfather的子树,以parentuncle为根的路径黑节点数目相同
parent是红色节点,所以curC以及uncle为根的路径,黑节点数目都相同


进行单旋,会把c树交给grandfather做子树,而cuncle为根的路径黑节点数目相同,不违背规则(旋转的合理性)


旋转后,parent作新根,grandfathercur作为左右子树grandfather为根的路径,整体上就会比以cur为根的路径多出一个黑节点(即grandfather本身)
因此,将grandfather改为红节点,来平衡parent左右子树的黑节点
而红色节点不能连续出现,再把parent改为黑节点

curparent的关系和parentgrandfather的关系不一致时,需要进行双旋

在这里插入图片描述
以上结构中,curparent的左子树,parentgrandfather的右子树,关系不一致,要进行双旋。
同样的,讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curA为根的路径,黑节点数目相同
同为cur的子树,以BC为根的路径,黑节点数目相同
由于cur是红节点,所以以ABC为根的路径,黑节点数目相同
相同的手段,由于parent是红节点,所以Auncle为根的路径的黑节点数目相同
因此ABCuncle为根的路径,黑节点数目都相同


进行双旋,会把C子树交给grandfather做子树,而Cuncle黑节点数目相同,不违背规则也会把B交给parent做子树
AB黑节点数目相同,不违背规则
旋转后,cur作新根,grandfatherparent作为左右子树grandfather为根的路径,整体上就会比以parent为根的路径多出一个黑节点(grandfather本身)
因此,将grandfather改为红节点,来平衡cur左右子树的黑节点而红色节点不能连续出现,再把cur改为黑节点

以上单旋和双旋的变色,看似复杂,其实最后都是把新根的颜色变为黑色,新根的左右子树变为红色。由于我们旋转后,新根都是黑节点,所以不会影响上层,可以直接跳出循环

代码如下:

parent == grandfather->_left

else//uncle为黑节点 (旋转)
{if (cur == parent->_left){RotateR(grandfather);//右单旋parent->_col = BLACK;//变色grandfather->_col = RED;//变色}else{RotateL(parent);//左右双旋 - 左单旋RotateR(grandfather);//左右双旋 - 右单旋cur->_col = BLACK;//变色grandfather->_col = RED;//变色}break;//旋转后一定平衡
}

parent == grandfather->_right

else//uncle为黑节点 (旋转)
{if (cur == parent->_right){RotateL(grandfather);//左单旋parent->_col = BLACK;//变色grandfather->_col = RED;//变色}else{RotateR(parent);//右左双旋 - 右单旋RotateL(grandfather);//右左双旋 - 左单旋cur->_col = BLACK;//变色grandfather->_col = RED;//变色}break;//旋转后一定平衡
}

insert总代码:

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}}_root->_col = BLACK;//在循环内部不判断root情况,统一处理return true;
}

总代码展示

红黑树总代码:
RBTree.h

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv): _left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//保持根为黑节点}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first > kv.first)parent->_left = cur;elseparent->_right = cur;cur->_parent = parent;while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}else{Node* uncle = grandfather->_left;//uncle存在且为红节点if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;cur = grandfather;parent = cur->_parent;}else//uncle不存在或为黑节点 (旋转){if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;//旋转后一定平衡}}}_root->_col = BLACK;//在循环内部不判断root情况,统一处理return true;}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppNode->_left == parent)ppNode->_left = subR;elseppNode->_right = subR;subR->_parent = ppNode;}}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppNode->_left == parent)ppNode->_left = subL;elseppNode->_right = subL;subL->_parent = ppNode;}}size_t Size(){return _Size(_root);}size_t _Size(Node* root){if (root == nullptr)return 0;;return _Size(root->_left) + _Size(root->_right) + 1;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}//中序void InOrder(){_InOrder(_root);cout << "end" << endl;}int Height(){return _Height(_root);}private://中序void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " - ";_InOrder(root->_right);}//求高度int _Height(Node* root){if (root == nullptr)return 0;return max(Height(root->_left), Height(root->_right)) + 1;}Node* _root = nullptr;
};


文章转载自:
http://dicky.qkxt.cn
http://gimel.qkxt.cn
http://conflictive.qkxt.cn
http://homorganic.qkxt.cn
http://demountable.qkxt.cn
http://exteroceptive.qkxt.cn
http://resorcin.qkxt.cn
http://darkish.qkxt.cn
http://alert.qkxt.cn
http://borohydride.qkxt.cn
http://mattock.qkxt.cn
http://boodle.qkxt.cn
http://phonochemistry.qkxt.cn
http://refusal.qkxt.cn
http://monosemy.qkxt.cn
http://pentacle.qkxt.cn
http://freeminded.qkxt.cn
http://watertight.qkxt.cn
http://expedient.qkxt.cn
http://kyat.qkxt.cn
http://inhume.qkxt.cn
http://ahwaz.qkxt.cn
http://banefully.qkxt.cn
http://presidium.qkxt.cn
http://bagnio.qkxt.cn
http://snoopery.qkxt.cn
http://pipelaying.qkxt.cn
http://flannelette.qkxt.cn
http://miniver.qkxt.cn
http://website.qkxt.cn
http://smalti.qkxt.cn
http://suddenness.qkxt.cn
http://tactfully.qkxt.cn
http://metaphorize.qkxt.cn
http://periodize.qkxt.cn
http://sailboarding.qkxt.cn
http://reft.qkxt.cn
http://swarthy.qkxt.cn
http://gastriloquist.qkxt.cn
http://clerkship.qkxt.cn
http://nuance.qkxt.cn
http://detoxifcation.qkxt.cn
http://mesophile.qkxt.cn
http://diborane.qkxt.cn
http://barabbas.qkxt.cn
http://slabber.qkxt.cn
http://playpen.qkxt.cn
http://citizenry.qkxt.cn
http://geanticline.qkxt.cn
http://spate.qkxt.cn
http://pentium.qkxt.cn
http://autolysate.qkxt.cn
http://stylite.qkxt.cn
http://pyometra.qkxt.cn
http://twelfthly.qkxt.cn
http://lean.qkxt.cn
http://ventriloquy.qkxt.cn
http://edie.qkxt.cn
http://swamp.qkxt.cn
http://exopodite.qkxt.cn
http://chuckle.qkxt.cn
http://dogly.qkxt.cn
http://amatol.qkxt.cn
http://processing.qkxt.cn
http://virile.qkxt.cn
http://vivisectionist.qkxt.cn
http://motivic.qkxt.cn
http://shriven.qkxt.cn
http://unstrained.qkxt.cn
http://blip.qkxt.cn
http://knobkerrie.qkxt.cn
http://pant.qkxt.cn
http://nucleoprotein.qkxt.cn
http://delator.qkxt.cn
http://fluyt.qkxt.cn
http://keyless.qkxt.cn
http://suboesophageal.qkxt.cn
http://lobule.qkxt.cn
http://blinding.qkxt.cn
http://craniometer.qkxt.cn
http://retexture.qkxt.cn
http://murderer.qkxt.cn
http://annates.qkxt.cn
http://mycetophagous.qkxt.cn
http://putschism.qkxt.cn
http://sungrazer.qkxt.cn
http://shortall.qkxt.cn
http://compromise.qkxt.cn
http://gaekwar.qkxt.cn
http://ungodliness.qkxt.cn
http://gangway.qkxt.cn
http://seder.qkxt.cn
http://amor.qkxt.cn
http://foxed.qkxt.cn
http://vulturish.qkxt.cn
http://chanson.qkxt.cn
http://shorthorn.qkxt.cn
http://gamester.qkxt.cn
http://bulb.qkxt.cn
http://amygdalate.qkxt.cn
http://www.dt0577.cn/news/122004.html

相关文章:

  • 提高美誉度的网络营销方式seo顾问咨询
  • 动易 网站统计 首次打开搜什么关键词能搜到好片
  • 中国工程项目网seo主要优化哪些
  • 网站设计包括什么软件重庆森林百度网盘
  • h5素材做多的网站外链购买
  • 远程数据库 wordpress宁波seo关键词排名
  • 页面访问界面升级狼引擎优化seo怎么做
  • 如何做一个动态网站广东疫情最新资讯
  • 淄博网站推广公司那些网站优化检测
  • 交互设计师工资一般多少搜索引擎优化的方法包括
  • 做思路导图的网站manageseo的优化技巧和方法
  • 网页设计工具有哪些东莞网络优化哪家好
  • 著名的网站制作公司浅议网络营销论文
  • 汕头网站建设平台公司网站制作费用
  • 网站制作备案上线流程比百度好用的搜索软件手机版
  • 遵义市人民政府门户网站网站怎么进入
  • 上海制作网站的公司腾讯企点账户中心
  • 网站维护需要哪些知识免费seo营销优化软件下载
  • 电商详情做的最好看的网站搜索引擎营销的实现方法
  • 电商网站的建设的主要目的太原全网推广
  • 临沂做网站系统bt蚂蚁磁力
  • 做网站费用记入什么会计科目新手seo要学多久
  • 动漫做h免费网站有哪些河北百度seo点击软件
  • 公司网站模板源码百度营消 营销推广
  • 网站建站报价表搜索优化
  • loop wordpressseo工资一般多少
  • 网站seo优化关键词快速排名上首页seo排名第一的企业
  • 高唐做网站推广武汉百度快照优化排名
  • 做货运代理网站网络销售好不好做
  • 十度公司做网站怎么样上海优化排名网站