当前位置: 首页 > news >正文

男人和女人做不可描述的事情的网站如何制作自己的公司网站

男人和女人做不可描述的事情的网站,如何制作自己的公司网站,网站开发 毕业论文,企业邮箱账号是什么🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:数据结构 🔥该文章主要讲述二叉树的递归结构及分治算法的思想。 目录: 🌍前言:🌍…

🚩纸上得来终觉浅, 绝知此事要躬行。
🌟主页:June-Frost
🚀专栏:数据结构

🔥该文章主要讲述二叉树的递归结构及分治算法的思想。

目录:

  • 🌍前言:
  • 🌍 二叉树的遍历
    • 🔭 前序遍历
    • 🔭 中序遍历
    • 🔭 后续遍历
  • 🌎 分治
    • 🔭 一些例子
  • ❤️ 结语

🌍前言:

 为了实现二叉树的基本操作以及更好的了解二叉树的结构,先手动创造一个链式二叉树。

#include<stdio.h>
#include<stdlib.h>typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;int val;
}BTNode;BTNode* BuyNode(int x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");exit(-1);}node->left = NULL;node->right = NULL;node->val = x;return node;
}
int main()
{//创建节点BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);BTNode* node7 = BuyNode(7);//建立关系node1->left = node2;node1->right = node3;node2->left = node4;node3->left = node5;node3->right = node6;node4->right = node7;return 0;
}

 创建出来的结构:

📗创建出来的这棵二叉树将为后续的遍历和分治做准备.

🌍 二叉树的遍历

  遍历操作可以快速熟悉二叉树的递归结构,二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

 如果二叉树不为空树,就需要看成三部分,即 根节点,根节点的左子树、根节点的右子树,这样就满足了递归结构:在这里插入图片描述

📙由于二叉树满足递归结构,所以按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  • 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。即顺序为:根 、左子树、右子树。

  • 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。即顺序为:左子树、右子树、根。

  • 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。即顺序为:左子树、右子树、根。

📗按照创建的二叉树,遍历的顺序为:


🔭 前序遍历

代码实现:

void PreOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->val);PreOrder(root->left);PreOrder(root->right);
}

动图展示:

前序遍历递归图解:


🔭 中序遍历

代码实现:

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}

动图展示:


  注意:对于这个动图的白色箭头为递归调用和结束,红色箭头是左子树部分调用结束之后打印节点的时机。

🔭 后续遍历

代码实现:

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

动图展示:

  注意:对于这个动图的白色箭头为递归调用和结束,红色箭头是右子树部分调用结束之后打印节点的时机。


🌎 分治

 分治思想是一种解决问题的方法,本质是一种管理,它的核心思想是将一个复杂的问题分解成若干个较小的子问题,然后分别解决这些子问题,最后将子问题的解合并得到原问题的解。这种思想在计算机科学、数学和工程领域都有广泛应用。
 分治思想的优点在于它可以有效地减少问题的复杂度,提高算法的效率。同时,它还可以提高代码的可读性和可维护性,因为可以将问题分解成更小的部分,更容易理解和修改。

🔭 一些例子

二叉树的节点个数

节点情况:

  • 如果是空节点,返回0。
  • 如果不是空节点,则返回该节点的左子树的节点数+右子树的节点个数+1(自己这个节点)。
int BinaryTreeSize(BTNode* root)
{return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

 这个代码的访问顺序其实就是后序遍历。

二叉树叶子节点个数

节点情况:

  • 如果是空,返回0。
  • 如果是叶子,返回1。
  • 不是叶子也不是空,就返回该节点左子树的叶子数 + 右子树的叶子数。
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}


二叉树第k层节点个数

int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->left,k-1) + BinaryTreeLevelKSize(root->right, k - 1);
}

❤️ 结语

 文章到这里就结束了,如果对你有帮助,你的点赞将会是我的最大动力,如果大家有什么问题或者不同的见解,欢迎大家的留言~

http://www.dt0577.cn/news/10814.html

相关文章:

  • 企业做网站的意义培训课程有哪些
  • 网站建设价格如何河北seo
  • seo如何做网站建设网站模板搭建
  • wordpress用户站内信软件测试培训费用大概多少
  • 宁波制作企业网站关键词优化是什么
  • 专业做外贸网站百度搜索风云榜总榜
  • 建筑设计官网短视频seo推广隐迅推专业
  • 建c2c网站费用苏州seo快速优化
  • 沈阳网站制作公司哪家好专业关键词排名软件
  • 广东微信网站开发哪家好站长之家权重查询
  • 江津哪个网站可以做顺风车seo网络优化教程
  • 自己怎么做网站建设谷歌关键词优化怎么做
  • 国贸网站建设标题seo是什么意思
  • 文化传播公司做网站宣传好吗百度推广产品有哪些
  • 做网站能申报只是产权么一个关键词要刷多久
  • 网站版面做好微信客户管理系统
  • 做网站用的大图seop
  • 清河县做网站广告制作
  • 做暖暖网站百度站长平台工具
  • 网站如何做cc防护seo百度百科
  • 外贸建站wordpress主题南京网络优化公司有哪些
  • 企业建站公司平台微信怎么推广找客源
  • 帝国网站管理 上一条 下一条 链接 信息id 信息发布时间怎么开发一个网站
  • 网站代码优化视频教程企业关键词推广
  • 品牌设计就业前景怎么样seo公司彼亿营销
  • 重庆搜索引擎推广windows优化大师收费
  • 广州做网站哪间公司好品牌运营管理有限公司
  • 东莞公司注册地址变更流程灰色seo推广
  • 淘宝客网站如何让做网页制作咨询公司
  • 计算机网站建设与维护产品推广方案ppt模板