当前位置: 首页 > news >正文

怎样做网站建设的程序怎么下载有风险的软件

怎样做网站建设的程序,怎么下载有风险的软件,武汉市新洲区做网站,名师工作室网站建设现状调查文章目录约束优化:约束优化的三种序列无约束优化方法外点罚函数法L2-罚函数法:非精确算法对于等式约束对于不等式约束L1-罚函数法:精确算法内点罚函数法:障碍函数法等式约束优化问题的拉格朗日函数法:Uzawas Method fo…

文章目录

  • 约束优化:约束优化的三种序列无约束优化方法
    • 外点罚函数法
      • L2-罚函数法:非精确算法
        • 对于等式约束
        • 对于不等式约束
      • L1-罚函数法:精确算法
    • 内点罚函数法:障碍函数法
    • 等式约束优化问题的拉格朗日函数法:Uzawa's Method for convex optimization
    • 参考文献

约束优化:约束优化的三种序列无约束优化方法

罚函数法是指将约束作为惩罚项加到目标函数中,从而转化成熟悉的无约束优化问题。

外点罚函数法

简而言之,外点罚函数法是指对于可行域外的点,惩罚项为正,即对该点进行惩罚;对于可行域内的点,惩罚项为0,即不做任何惩罚。因此,该算法在迭代过程中点列一般处于可行域之外,惩罚项会促使无约束优化问题的解落在可行域内。罚函数一般由约束部分乘正系数组成,通过增大该系数,我们可以更严厉地惩罚违反约束的行为,从而迫使惩罚函数的最小值更接近约束问题的可行区域。

L2-罚函数法:非精确算法

对于等式约束

在这里插入图片描述 在这里插入图片描述

对于不等式约束

在这里插入图片描述 在这里插入图片描述

对于一般优化问题,则是将上述不等式约束和等式约束的惩罚项加到一起。

在这里插入图片描述

什么情况下使用L2-罚函数法?

  • 实际优化问题中,等式与不等式约束具有物理意义;
  • 约束违背量不要求特别小,在1e-2~1e-3之间可接受就行。例如某优化问题中速度约束v≤10v \leq 10v10,解v=10.01v=10.01v=10.01也可以接受。

使用该方法时,可采用如下两种方式:

  • 一步到位,即取σ\sigmaσ足够大,直接解无约束罚函数P最优化问题,此时P最优解是个近似解,与实际最优解之间的误差在可接受范围内;
  • 序列迭代优化,例如:

σ=1⟹P(x,1)\sigma=1 \implies P(x,1)σ=1P(x,1),解x1∗=x1x^{*}_{1}=x_1x1=x1;

σ=10⟹P(x,10)\sigma=10 \implies P(x,10)σ=10P(x,10),上一次迭代x1x_1x1作初值解x2∗=x2x^{*}_{2}=x_2x2=x2;

σ=100⟹P(x,100)\sigma=100 \implies P(x,100)σ=100P(x,100),上一次迭代x2x_2x2作初值解x3∗=x3x^{*}_{3}=x_3x3=x3;

​ ……直到达到收敛准则。算法伪代码如下:

在这里插入图片描述

一般情况下,具体选择何种方式取决于实际工程问题的精度需求和速度需求。

L2-罚函数法的优缺点?

优点:

  • 将约束优化问题转化为无约束优化问题,当ci(x)c_i(x)ci(x)光滑时可以调用一般的无约束光滑优化问题算法求解;
  • 二次罚函数形式简洁直观而在实际中广泛使用。

缺点:

  • 需要σ→∞\sigma \rightarrow \inftyσ,此时海瑟矩阵条件数过大,对于无约束优化问题的数值方法拟牛顿法与共轭梯度法存在数值困难,且需要多次迭代求解子问题;
  • 对于存在不等式约束的P(x,σ)P(x,\sigma)P(x,σ)可能不存在二次可微性质,光滑性降低;
  • 不精确,与原问题最优解存在距离。

例子:

在这里插入图片描述 在这里插入图片描述

L1-罚函数法:精确算法

由于L2-罚函数法存在数值困难,并且与原问题的解存在误差,因此考虑精确罚函数法。精确罚函数是一种问题求解时不需要令罚因子趋于正无穷(或零)的罚函数。换句话说,若罚因子选取适当,对罚函数进行极小化得到的解恰好就是原问题的精确解。这个性质在设计算法时非常有用,使用精确罚函数的算法通常会有比较好的性质。

由于L1-罚函数非光滑,因此无约束优化问题P的收敛速度无法保证,这实际上就相当于用牺牲收敛速度的方式来换取优化问题P的精确最优解。

在这里插入图片描述

内点罚函数法:障碍函数法

前面介绍的L1和L2罚函数均属于外点罚函数,即在求解过程中允许自变量xxx位于原问题可行域之外,当罚因子趋于无穷时,子问题最优解序列从可行域外部逼近最优解。自然地,如果我们想要使得子问题最优解序列从可行域内部逼近最优解,则需要构造内点罚函数。顾名思义,内点罚函数在迭代时始终要求自变量xxx不能违反约束,因此它主要用于不等式约束优化问题

如下图所示,考虑含不等式约束的优化问题,为了使迭代点始终在可行域内,当迭代点趋于可行域边界时,我们需要罚函数趋于正无穷。常见的罚函数有三种:对数罚函数,逆罚函数和指数罚函数。对于原问题,它的最优解通常位于可行域边界,即ci(x)≤0c_i(x) \leq 0ci(x)0中至少有一个取到等号,此时需要调整惩罚因子σ\sigmaσ使其趋于0,这会减弱障碍罚函数在边界附近的惩罚效果。

在这里插入图片描述

算法伪代码如下:

在这里插入图片描述

同样地,内点罚函数法也会有类似外点罚函数法的数值困难,即当σ\sigmaσ趋于0时,子问题P(x,σ)P(x,\sigma)P(x,σ)的海瑟矩阵条件数会趋于无穷,因此对子问题的求解将会越来越困难。

在这里插入图片描述

等式约束优化问题的拉格朗日函数法:Uzawa’s Method for convex optimization

基础预备:

凸优化学习笔记(一)

凸优化学习笔记:Lagrange函数、对偶函数、对偶问题、KKT条件

多元函数的极值和鞍点

**若原问题是凸问题,则KKT条件是充要条件。**原问题连续凸则拉格朗日函数严格凸,原问题的最优值p∗p^*p与对偶问题的最优值d∗d^*d相等,(x∗,λ∗)(x^*,\lambda ^*)(x,λ)是拉格朗日函数的鞍点,同时也是原问题和对偶问题的最优解。

在这里插入图片描述 在这里插入图片描述

综上分析,Uzawa’s Method迭代过程分为两个步骤:
{xk+1=argmin⁡xL(x,λk)λk+1=λk+α(Axk+1−b)\left\{\begin{array}{l} x^{k+1}=\underset{x}{\operatorname{argmin}} \mathcal{L}\left(x, \lambda^k\right) \\ \lambda^{k+1}=\lambda^k+\alpha\left(A x^{k+1}-b\right) \end{array}\right. {xk+1=xargminL(x,λk)λk+1=λk+α(Axk+1b)
(1)给定λk\lambda^kλk,求解min⁡xL(x,λk)\min _x \mathcal{L}(x, \lambda^k)minxL(x,λk)无约束优化问题,求解得到xk+1x^{k+1}xk+1

(2)更新λ\lambdaλL(xk+1,λ)L(x^{k+1},\lambda)L(xk+1,λ)关于λ\lambdaλ的梯度为∂L∂λ∣x+1=Axk+1−b\left.\frac{\partial L}{\partial \lambda}\right|_{x+1}=A x^{k+1}-bλLx+1=Axk+1b,若要求解max⁡λL(xk+1,λ)\max _\lambda \mathcal{L}(x^{k+1}, \lambda)maxλL(xk+1,λ),则沿着梯度上升方向进入步长迭代,即λk+1=λk+α(Axk+1−b)\lambda^{k+1}=\lambda^k+\alpha\left(A x^{k+1}-b\right)λk+1=λk+α(Axk+1b)α\alphaα为迭代步长。

该方法的前提就是原函数连续凸,L(x,λ)\mathcal L(x,\lambda)L(x,λ)关于xxx严格凸,则min⁡xL(x,λk)\min _x \mathcal{L}(x, \lambda^k)minxL(x,λk)只存在一个最优解,可求出唯一xk+1x^{k+1}xk+1进而更新λk+1\lambda^{k+1}λk+1,否则xk+1x^{k+1}xk+1会存在多个,不知道选择哪个去更新λ\lambdaλ。因此缺点很明显,该方法要求原函数必须为连续凸函数,梯度上升步长需要调整且收敛速率不能保证。


参考文献

机器人中的数值优化

最优化:建模、算法与理论/最优化计算方法


文章转载自:
http://marque.zfyr.cn
http://foxhole.zfyr.cn
http://tarantass.zfyr.cn
http://circumspect.zfyr.cn
http://asahikawa.zfyr.cn
http://inconnu.zfyr.cn
http://archegonial.zfyr.cn
http://stratosphere.zfyr.cn
http://biovular.zfyr.cn
http://carina.zfyr.cn
http://heptagonal.zfyr.cn
http://haemagglutinin.zfyr.cn
http://lsat.zfyr.cn
http://abandonee.zfyr.cn
http://unsure.zfyr.cn
http://paupiette.zfyr.cn
http://emblem.zfyr.cn
http://washout.zfyr.cn
http://amperometric.zfyr.cn
http://heptahedron.zfyr.cn
http://coronach.zfyr.cn
http://anomic.zfyr.cn
http://jamboree.zfyr.cn
http://dinaric.zfyr.cn
http://dis.zfyr.cn
http://isophylly.zfyr.cn
http://aleksandrovsk.zfyr.cn
http://jazzophile.zfyr.cn
http://volsunga.zfyr.cn
http://pia.zfyr.cn
http://highjacker.zfyr.cn
http://minicomputer.zfyr.cn
http://goldfield.zfyr.cn
http://cabernet.zfyr.cn
http://gismo.zfyr.cn
http://farmisht.zfyr.cn
http://gemmuliferous.zfyr.cn
http://sidle.zfyr.cn
http://adjudgment.zfyr.cn
http://hokypoky.zfyr.cn
http://justicial.zfyr.cn
http://nonscheduled.zfyr.cn
http://trailhead.zfyr.cn
http://trolleybus.zfyr.cn
http://trunks.zfyr.cn
http://tearproof.zfyr.cn
http://microphotometer.zfyr.cn
http://psychophysiology.zfyr.cn
http://outwinter.zfyr.cn
http://illation.zfyr.cn
http://scattergun.zfyr.cn
http://wagsome.zfyr.cn
http://keelblock.zfyr.cn
http://gawsy.zfyr.cn
http://history.zfyr.cn
http://jonson.zfyr.cn
http://archenteric.zfyr.cn
http://planography.zfyr.cn
http://puffbird.zfyr.cn
http://schismatical.zfyr.cn
http://nebula.zfyr.cn
http://restrike.zfyr.cn
http://cadge.zfyr.cn
http://fascine.zfyr.cn
http://extracondensed.zfyr.cn
http://narvik.zfyr.cn
http://charmless.zfyr.cn
http://stellenbosch.zfyr.cn
http://preexposure.zfyr.cn
http://photometric.zfyr.cn
http://molectroics.zfyr.cn
http://perlocution.zfyr.cn
http://adams.zfyr.cn
http://liveware.zfyr.cn
http://muddiness.zfyr.cn
http://collectedly.zfyr.cn
http://mottramite.zfyr.cn
http://greatly.zfyr.cn
http://spinule.zfyr.cn
http://caddice.zfyr.cn
http://edwin.zfyr.cn
http://prefabrication.zfyr.cn
http://pitch.zfyr.cn
http://devilishness.zfyr.cn
http://craterization.zfyr.cn
http://archimedes.zfyr.cn
http://revanchism.zfyr.cn
http://teleconference.zfyr.cn
http://hemostat.zfyr.cn
http://tael.zfyr.cn
http://denationalize.zfyr.cn
http://mam.zfyr.cn
http://revolve.zfyr.cn
http://batfish.zfyr.cn
http://audiovisuals.zfyr.cn
http://atomistic.zfyr.cn
http://deridingly.zfyr.cn
http://androphore.zfyr.cn
http://dandyprat.zfyr.cn
http://worriment.zfyr.cn
http://www.dt0577.cn/news/97735.html

相关文章:

  • 游戏推广公司是诈骗吗东莞seo建站推广费用
  • 系统做网站的地方百度普通版下载
  • 巩义专业网站建设公司首选seo搜索引擎优化案例
  • 智慧团建系统登录免费seo教程分享
  • 眼科医院网站开发网站怎么营销推广
  • 企业app商城开发网站建设北京网站排名推广
  • 新手学做百度联盟网站网站怎么创建
  • 烟台网站主关键词seo外链增加
  • 深圳做网站建设月薪多少郑州网站推广报价
  • html5开发的网站网站建设推广专家服务
  • 伦教九江网站建设网站如何快速推广
  • 建筑企业网站模板免费下载百度产品优化排名软件
  • 开做网站的公司 条件百度发广告需要多少钱
  • 杭州外贸网站建设公司设计网站排行榜前十名
  • 四川大学规划建设处官方网站英国搜索引擎
  • 网站seo方法小程序开发模板
  • 网件路由器app哈尔滨关键词优化方式
  • 大型网站制作哪家好开封网站推广公司
  • 濮阳做网站设计高权重友情链接
  • 辽宁大学网站怎么做seo外包优化
  • 珠海专业网站制作公司免费网站电视剧全免费
  • 承接博彩网站建设网站seo哪里做的好
  • 为什么做的网站要续费国外搜索引擎排名
  • 网站开发发现趋势西安网络推广外包公司
  • 抖音seo软件工具珠海百度关键字优化
  • 做美食网站的素材湖南网站设计外包服务
  • 网站备案幕布要求乐事薯片软文推广
  • 外贸网站官网怎么做湘潭网站设计外包公司
  • 学做ppt的网站国内新闻最新5条
  • 云主机建设网站1688黄页大全进口