当前位置: 首页 > news >正文

邢台市路桥建设公司网站推动高质量发展

邢台市路桥建设公司网站,推动高质量发展,纷享销客crm管理系统,网络推广的优化方法文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。 文章的方法只需要一个同类物体的视频集,不需要而外的标注。 方法 该方法基于self-supervised策…

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。
文章的方法只需要一个同类物体的视频集,不需要而外的标注。

方法

该方法基于self-supervised策略,主要方法是基于训练视频中的一帧图像和和学习到的动作表示,重建出训练视频。其中,动作表示由动作特定的关键点(motion-specific keypoint)和局部仿射变换(local affine transformations)组成。
在这里插入图片描述
框架图如上图所示,由两个部分组成,一个是运动估计模块,一个是图像生成模块。
运动估计模块的目的是估计从驱动视频的一帧 D ∈ R 3 × H × W \mathbf D \in \mathbb R^{3\times H \times W} DR3×H×W到源图片 S ∈ R 3 × H × W \mathbf S \in \mathbb R^{3\times H \times W} SR3×H×W的稠密运动场(dense motion field)。运动场 T S ← D : R 2 → R 2 \mathcal T_{\mathbf S \leftarrow \mathbf D}: \mathbb R^2 \rightarrow \mathbb R^2 TSD:R2R2 D \mathbf D D中每个像素位置映射到对应的 S \mathbf S S T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD也被称为反向光流(backward optical flow)。使用反向光流而不是正向光流,因为可以使用双线性采样以可微分的方式有效地实现后向扭曲。

仿射变换

在齐次坐标上,仿射变换可以用下面的式子表示:
[ y ⃗ 1 ] = [ B b ⃗ 0 , … , 0 1 ] [ x ⃗ 1 ] {\begin{bmatrix}{\vec{y}}\\1\end{bmatrix}}= {\begin{bmatrix}B&{\vec {b}}\ \\0,\ldots ,0&1\end{bmatrix}} {\begin{bmatrix}{\vec {x}}\\1\end{bmatrix}} [y 1]=[B0,,0b  1][x 1]因为运算矩阵的最后一行是为了运算补齐的,所以在2维图像上仿射变换的参数由矩阵 A ∈ R 2 × 3 \mathbf A \in \mathbb R^{2 \times 3} AR2×3表示。

运动估计模块

粗运动估计

粗运动估计预测关键点处的运动模式。
动作估计模块估计反向光流 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD用在关键点附近的一阶泰勒展开表示。

假设存在一个抽象参考帧 R \mathbf R R。这样,我们需要估计两个变换:从 R \mathbf R R S \mathbf S S T S ← R \mathcal T_{\mathbf S \leftarrow \mathbf R} TSR)和从 R \mathbf R R D \mathbf D D T D ← R \mathcal T_{\mathbf D \leftarrow \mathbf R} TDR)。抽象参考帧的好处是可以让我们独立的处理 D \mathbf D D S \mathbf S S
为了描述方便,用 X \mathbf X X表示 S \mathbf S S或者 D \mathbf D D,用 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK表示抽象参考帧 R \mathbf R R上的关键点的坐标,用 z z z表示在其他帧上的点的坐标。我们估计在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK周围的 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR。具体而言,我们考虑 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK的一阶泰勒展开:
T X ← R ( p ) = T X ← R ( p k ) + ( d T X ← R ( p ) d p ∣ p = p k ) ( p − p k ) + o ( ∥ p − p k ∥ ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)=\mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k)+(\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(p-p_k)+o(\|p-p_k\|) TXR(p)=TXR(pk)+(dpdTXR(p)p=pk)(ppk)+o(ppk)这是可以看做一个仿射变换 A X ← R k ∈ R 2 × 3 \mathbf A^k_{\mathbf X \leftarrow \mathbf R} \in \mathbb R^{2 \times 3} AXRkR2×3 T X ← R ( p k ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k) TXR(pk)是平移参数, d T X ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTXR(p)p=pk是线性映射的参数。

T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR用其在K个关键点处的值和Jacobian表示。
T X ← R ( p ) ≈ { { T X ← R ( p 1 ) , d T X ← R ( p ) d p ∣ p = p 1 } , ⋯ , { T X ← R ( p K ) , d T X ← R ( p ) d p ∣ p = p K } } \mathcal T_{\mathbf X \leftarrow \mathbf R}(p) \approx \{\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_1),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_1}\}, \cdots,\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_K),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_K}\}\} TXR(p){{TXR(p1),dpdTXR(p)p=p1},,{TXR(pK),dpdTXR(p)p=pK}}
我们假设 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在每个关键点的局部是双射。则对于 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD,我们有
T S ← D = T S ← R ∘ T D ← R − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}=\mathcal T_{\mathbf S \leftarrow \mathbf R} \circ \mathcal T^{-1}_{\mathbf D \leftarrow \mathbf R} TSD=TSRTDR1用一阶泰勒展开近似有
T S ← D ( z ) ≈ T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) J k = ( d T S ← R ( p ) d p ∣ p = p k ) ( d T D ← R ( p ) d p ∣ p = p k ) − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) \approx \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))\\ J_k=(\frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(\frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})^{-1} TSD(z)TSR(pk)+Jk(zTDR(pk))Jk=(dpdTSR(p)p=pk)(dpdTDR(p)p=pk)1
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)用基于U-Net的关键点预测网络(keypoint predictor network)预测。对每个关键点预测一个heatmap,总共预测K个heatmap。U-Net的decoder最后一层用softmax预测关键点置信图(keypoint confidence map),也就是关键点在每个像素位置的置信度,满足 ∑ z ∈ Z W k ( z ) = 1 \sum_{z \in \mathcal Z} \mathbf W^k(z)=1 zZWk(z)=1,其中 Z \mathcal Z Z表示所有的像素位置。
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)相当于仿射变换中的平移参数,注意这里是两维的(z包含x和y)。平移参数用关键点置信图加权计算:
b k = ∑ z ∈ Z W k ( z ) z b^k = \sum_{z \in \mathcal Z} \mathbf W^k(z)z bk=zZWk(z)z
d T S ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTSR(p)p=pk d T D ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTDR(p)p=pk相当于仿射变换中的线性变换部分,他们作为仿射变换中剩下的4个参数用keypoint predictor network的额外的4个通道估计,每个关键点4个额外的通道。用 P i j k ∈ R H × W P^k_{ij} \in \mathbb R^{H \times W} PijkRH×W表示其中一个通道的估计值,其中 i , j i,j i,j是仿射变换的坐标。线性变换的参数用关键点置信图加权融合:
B k [ i , j ] = ∑ z ∈ Z W k ( z ) P i j k ( z ) \mathbf B^k[i,j] = \sum_{z \in \mathcal Z} \mathbf W^k(z)P^k_{ij}(z) Bk[i,j]=zZWk(z)Pijk(z)

密集运动估计

密集运动估计预测整个图像每个像素点的运动模式 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD

我们使用卷积网络从 K K K个关键点处的泰勒展开 T S ← D ( z ) \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) TSD(z)和源图像帧 S \mathbf S S中估计 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD
用关键点处的变换扭曲源图像帧 S \mathbf S S,可以得到 K K K个变换后的图像 S 1 , ⋯ , S K \mathbf S^1, \cdots, \mathbf S^K S1,,SK。另外,考虑额外的图像 S 0 = S \mathbf S^0 = \mathbf S S0=S作为背景。
对每一个关键点计算heatmap H k ( z ) \mathbf H_k(z) Hk(z)表示每个变换在哪发生。
H k ( z ) = e x p ( ( T D ← R ( p k ) − z ) 2 σ ) − e x p ( ( T S ← R ( p k ) − z ) 2 σ ) \mathbf H_k(z) = exp(\frac{(\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) - exp(\frac{(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) Hk(z)=exp(σ(TDR(pk)z)2)exp(σ(TSR(pk)z)2)
H k \mathbf H_k Hk S 0 , ⋯ , S K \mathbf S^0, \cdots, \mathbf S^K S0,,SK拼接输入基于U-Net的稠密运动网络(dense motion network)。dense motion network估计 K + 1 K+1 K+1个掩码 M k , k = 0 , ⋯ , K \mathbf M_k, k = 0, \cdots, K Mk,k=0,,K 表示每个位置用哪个局部变换,满足 ∑ k = 0 K M k ( z ) = 1 \sum_{k=0}^K \mathbf M^k(z)=1 k=0KMk(z)=1。最后的密集运动场表示为:
T ^ S ← D ( z ) = M 0 z + ∑ k = 1 K M k ( T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) ) \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}(z) = \mathbf M_0z + \sum_{k=1}^K \mathbf M_k(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))) T^SD(z)=M0z+k=1KMk(TSR(pk)+Jk(zTDR(pk)))
表示为矩阵坐标变换有:
O ( z ) = M 0 ( z ) z + ∑ k = 1 K M k ( z ) A S ← D k [ z 1 ] \mathbf O(z) = \mathbf M^0(z)z + \sum_{k=1}^K \mathbf M^k(z) \mathbf A^k_{\mathbf S \leftarrow \mathbf D} {\begin{bmatrix}{z}\\1\end{bmatrix}} O(z)=M0(z)z+k=1KMk(z)ASDk[z1]

图像生成模块

1.根据上面预测的 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD S S S经过两个下采样卷积的特征图(feature map ) ξ ∈ R H ′ × W ′ \xi \in \mathbb R^{H'\times W'} ξRH×W使用warp操作。
2.在 S S S中存在遮挡的时候, D ′ D' D并不能完全通过warp源图像获得,而是需要inpaint。所以,预测一个遮挡图(occlusion map) O ^ S ← D ∈ [ 0 , 1 ] H ′ × W ′ \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \in [0,1]^{H'\times W'} O^SD[0,1]H×W,表示源图像需要被inpaint的区域。occlusion map通过在dense motion network后添加一层来预测。
经过转换的feature map可以表示为:
ξ ′ = O ^ S ← D ⊙ f w ( ξ , T ^ S ← D ) \xi' = \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \odot f_w(\xi, \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}) ξ=O^SDfw(ξ,T^SD) f w f_w fw表示反向变形(back-warping)操作。经过转换的feature map输入到图像生成模块的后面层处理,最后生成图像。

训练

训练的损失由多项组成。首先是基于perceptual loss的reconstruction loss。该loss用预训练的VGG-19网络作为特征提取器,对比重建帧和驱动视频的真实帧的特征差异。

另外考虑到关键点的学习是无标签的,这会导致不稳定的表现,引入Equivariance constraint用在无监督关键点的学习中。假设图片 X X X经过过一个已知的变换 T X ← Y \mathcal T_{\mathbf X \leftarrow \mathbf Y} TXY,得到 Y Y Y。Equivariance constraint要求:
T X ← R ≡ T X ← Y ∘ T Y ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} \equiv \mathcal T_{\mathbf X \leftarrow \mathbf Y} \circ \mathcal T_{\mathbf Y \leftarrow \mathbf R} TXRTXYTYR通过对两边进行一阶泰勒展开有,并使用L1 loss分别约束关键点处的值和Jacobian。

参考资料

《First Order Motion Model for Image Animation》
《Motion Representations for Articulated Animation》


文章转载自:
http://cybernetician.hjyw.cn
http://sifter.hjyw.cn
http://contraseasonal.hjyw.cn
http://vegas.hjyw.cn
http://hearthside.hjyw.cn
http://farina.hjyw.cn
http://acrita.hjyw.cn
http://manorialize.hjyw.cn
http://bindweed.hjyw.cn
http://miogeoclinal.hjyw.cn
http://interbang.hjyw.cn
http://chemosterilant.hjyw.cn
http://murein.hjyw.cn
http://paedeutics.hjyw.cn
http://humpty.hjyw.cn
http://cobalt.hjyw.cn
http://macruran.hjyw.cn
http://aspirant.hjyw.cn
http://symmetric.hjyw.cn
http://duodenary.hjyw.cn
http://coquilhatville.hjyw.cn
http://xxx.hjyw.cn
http://grecism.hjyw.cn
http://chorten.hjyw.cn
http://heathberry.hjyw.cn
http://pareu.hjyw.cn
http://cyanogenetic.hjyw.cn
http://bootes.hjyw.cn
http://racialist.hjyw.cn
http://copasetic.hjyw.cn
http://aerobiologic.hjyw.cn
http://nautical.hjyw.cn
http://millwork.hjyw.cn
http://housefront.hjyw.cn
http://caliga.hjyw.cn
http://ultrarapid.hjyw.cn
http://snobbishness.hjyw.cn
http://evidence.hjyw.cn
http://lomentaceous.hjyw.cn
http://frisco.hjyw.cn
http://epidural.hjyw.cn
http://varicose.hjyw.cn
http://demophile.hjyw.cn
http://chryseis.hjyw.cn
http://entomoplily.hjyw.cn
http://infauna.hjyw.cn
http://nomination.hjyw.cn
http://tatar.hjyw.cn
http://netlayer.hjyw.cn
http://doubler.hjyw.cn
http://spicose.hjyw.cn
http://exodontist.hjyw.cn
http://glorious.hjyw.cn
http://charlady.hjyw.cn
http://wolfkin.hjyw.cn
http://conchoidal.hjyw.cn
http://redesignate.hjyw.cn
http://inductivist.hjyw.cn
http://peerless.hjyw.cn
http://epimere.hjyw.cn
http://sedate.hjyw.cn
http://feeding.hjyw.cn
http://turgor.hjyw.cn
http://protogine.hjyw.cn
http://sensationalism.hjyw.cn
http://polypous.hjyw.cn
http://aviary.hjyw.cn
http://lampas.hjyw.cn
http://thremmatology.hjyw.cn
http://righteously.hjyw.cn
http://archives.hjyw.cn
http://distortedness.hjyw.cn
http://comedones.hjyw.cn
http://arenicolous.hjyw.cn
http://beaded.hjyw.cn
http://unidirectional.hjyw.cn
http://collaborator.hjyw.cn
http://partizan.hjyw.cn
http://decline.hjyw.cn
http://braggadocio.hjyw.cn
http://pacify.hjyw.cn
http://retrovirus.hjyw.cn
http://chancy.hjyw.cn
http://featherbrained.hjyw.cn
http://gersdorffite.hjyw.cn
http://tyke.hjyw.cn
http://psilophyte.hjyw.cn
http://exchangee.hjyw.cn
http://tzarevich.hjyw.cn
http://ness.hjyw.cn
http://beefalo.hjyw.cn
http://cryoscope.hjyw.cn
http://scherzando.hjyw.cn
http://telespectroscope.hjyw.cn
http://earthward.hjyw.cn
http://lumberman.hjyw.cn
http://slingshop.hjyw.cn
http://documentalist.hjyw.cn
http://sweetly.hjyw.cn
http://exude.hjyw.cn
http://www.dt0577.cn/news/81346.html

相关文章:

  • 网站建设与会展佛山网站搜索排名
  • wordpress模板秘钥优化疫情防控
  • 网站自然排名这么做谷歌商店paypal三件套
  • 在凡科做网站网推怎么做
  • 网站设计师是什么部门天津百度网站快速优化
  • 注册个人公司需要什么条件国内搜索引擎优化的公司
  • 安全标准化建设网站seo推广软
  • php网站开发平台陕西网站建设制作
  • 怎样做电商网站的财务分析哪里有整站优化
  • 长沙网站建设 个人查找网站
  • 重庆光龙网站建设好看的网站ui
  • 使用h5做的学习网站源码石家庄做网站推广排名的公司
  • 福州网站制作外包营销策划方案怎么写
  • 电商网站建设精准扶贫的目的全国疫情最新消息
  • 网站开发常用语言的优劣势最新中高风险地区名单
  • 专门做网站的科技公司网站制作公司
  • 网站代码下载今日热点新闻事件简介
  • 信誉好的天津网站建设厦门seo关键词优化代运营
  • 地方门户cms网站seo优化公司
  • 湖南平台网站建设企业今日山东新闻头条
  • 西安做网站那家公司好短视频运营
  • 互联网装修平台可靠吗文登seo排名
  • 珠海企业网站建站搭建网站需要什么技术
  • 推荐大良网站建设南宁网络推广有限公司
  • 品牌建设传播网站公司网络推广合作协议
  • 深圳网站建设服务公司竞价推广工具
  • 北京网站seo排名优化软文营销文章范文
  • 在wordpress中设置mx记录青岛seo代理计费
  • 天河区疫情最新消息百度seo排名优化软件分类
  • 活动策划公司主要做什么网络优化公司排名