独立web网站服务器百度热词
1 获取Whetstone程序
Whetstone程序,我用github被墙了,所以用了KK的方式。
获取的程序目录如上所示。
2 新建STM32工程
配置如上,生成工程即可。
3 在生成的工程中添加并修改Whetstone程序
3.1 实现串口打印功能
在生成的usart.c文件中添加些代码,实现串口打印(注意串口的IO引脚,STM32G4的评估板需要外部连接串口,USB口没有连接串口线)。
#ifndef __MICROLIB
#define __FILE_INCOMPLETE 1
#endif
#include <stdio.h>#ifndef __MICROLIB
struct __FILE
{int handle;/* Whatever you require here. If the only file you are using is *//* standard output using printf() for debugging, no file handling *//* is required. */
}__stdout;
#endif
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)// 该函数放在usart.c文件最后即可
PUTCHAR_PROTOTYPE
{/* e.g. write a character to the LPUART1 and Loop until the end of transmission */HAL_UART_Transmit(&hlpuart1, (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
此外,需要在MX_LPUART1_UART_Init()函数中添加USART外设初始化函数。
HAL_UART_MspInit(&hlpuart1);
至此串口打印功能即添加完成。
3.2 修改whetstone.c
工程目录下新建Whetstone文件夹,并将whetstone.c拷贝进去
给工程添加源文件
/*******************************whetstone.c*************************************/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>// 添加头文件
#include "main.h" // 我将Whetstone的函数声明放在main.h了
#include <stdint.h>
#include "stm32g4xx_hal.h"//stm32G4的hal库头文件,若更换芯片型哈需要更改// 添加systick计时
#define GETMYTIME(_t) (*_t = HAL_GetTick())//使用Systick获取时间
uint64_t TickValue = 0;// 中间变量/* map the FORTRAN math functions, etc. to the C versions */
#define DSIN sin
#define DCOS cos
#define DATAN atan
#define DLOG log
#define DEXP exp
#define DSQRT sqrt
#define IF if/* function prototypes */
void POUT(long N, long J, long K, double X1, double X2, double X3, double X4);
void PA(double E[]);
void P0(void);
void P3(double X, double Y, double *Z);
#define USAGE "usage: whetdc [-c] [loops]\n"//#define PRINTOUT 1uint32_t time_in_secs(uint64_t ticks);
uint64_t get_timer_value(void);/*COMMON T,T1,T2,E1(4),J,K,L
*/
double T,T1,T2,E1[5];
int J,K,L;
int argc = 0; //Mod for nucleo. Change in code below if you want non-default loop count//************************************
//** Whetstone 64b-DP **
//** SUB **
//************************************
int Whetstone(void) // ------------ Metoda -----------
{printf("Beginning Whetstone benchmark at ");printf(" %d MHz ...\n\n", SystemCoreClock/1000000);/* used in the FORTRAN version */long I;long N1, N2, N3, N4, N6, N7, N8, N9, N10, N11;double X1,X2,X3,X4,X,Y,Z;long LOOP;int II, JJ;/* added for this version */long loopstart = 0;uint64_t startsec,finisec = 0;double KIPS;int continuous;loopstart = 25000; /* 1000 see the note about LOOP below */continuous = 0;II = 1; /* start at the first arg (temp use of II here) */LCONT:
/*
********************************************
* Start benchmark timing at this point.
********************************************
*/startsec = 0;finisec = 0;startsec = get_timer_value();/*
********************************************
* The actual benchmark starts here.
********************************************
*/T = .499975;T1 = 0.50025;T2 = 2.0;
/*
********************************************
* With loopcount LOOP=10, one million Whetstone instructions
* will be executed in EACH MAJOR LOOP..A MAJOR LOOP IS EXECUTED
* 'II' TIMES TO INCREASE WALL-CLOCK TIMING ACCURACY.
*
* LOOP = 1000;
*/LOOP = loopstart;II = 1;JJ = 1;IILOOP:N1 = 0;N2 = 12 * LOOP;N3 = 14 * LOOP;N4 = 345 * LOOP;N6 = 210 * LOOP;N7 = 32 * LOOP;N8 = 899 * LOOP;N9 = 616 * LOOP;N10 = 0;N11 = 93 * LOOP;
/*
********************************************
* Module 1: Simple identifiers
********************************************
*/X1 = 1.0;X2 = -1.0;X3 = -1.0;X4 = -1.0;for (I = 1; I <= N1; I++){X1 = (X1 + X2 + X3 - X4) * T;X2 = (X1 + X2 - X3 + X4) * T;X3 = (X1 - X2 + X3 + X4) * T;X4 = (-X1+ X2 + X3 + X4) * T;}
#ifdef PRINTOUTIF (JJ==II) POUT(N1,N1,N1,X1,X2,X3,X4);
#endif/*
********************************************
* Module 2: Array elements
********************************************
*/E1[1] = 1.0;E1[2] = -1.0;E1[3] = -1.0;E1[4] = -1.0;for (I = 1; I <= N2; I++){E1[1] = ( E1[1] + E1[2] + E1[3] - E1[4]) * T;E1[2] = ( E1[1] + E1[2] - E1[3] + E1[4]) * T;E1[3] = ( E1[1] - E1[2] + E1[3] + E1[4]) * T;E1[4] = (-E1[1] + E1[2] + E1[3] + E1[4]) * T;}#ifdef PRINTOUTIF (JJ==II) POUT(N2,N3,N2,E1[1],E1[2],E1[3],E1[4]);
#endif/*
********************************************
* Module 3: Array as parameter
********************************************
*/for (I = 1; I <= N3; I++){PA(E1);}
#ifdef PRINTOUTIF (JJ==II) POUT(N3,N2,N2,E1[1],E1[2],E1[3],E1[4]);
#endif/*
********************************************
* Module 4: Conditional jumps
********************************************
*/J = 1;for (I = 1; I <= N4; I++){if (J == 1)J = 2;elseJ = 3;if (J > 2)J = 0;elseJ = 1;if (J < 1)J = 1;elseJ = 0;}#ifdef PRINTOUTIF (JJ==II) POUT(N4,J,J,X1,X2,X3,X4);
#endif/*
********************************************
* Module 5: Omitted
* Module 6: Integer arithmetic
********************************************
*/J = 1;K = 2;L = 3;for (I = 1; I <= N6; I++){J = J * (K-J) * (L-K);K = L * K - (L-J) * K;L = (L-K) * (K+J);E1[L-1] = J + K + L;E1[K-1] = J * K * L;}#ifdef PRINTOUTIF (JJ==II) POUT(N6,J,K,E1[1],E1[2],E1[3],E1[4]);
#endif/*
********************************************
* Module 7: Trigonometric functions
********************************************
*/X = 0.5;Y = 0.5;for (I = 1; I <= N7; I++){X = T * DATAN(T2*DSIN(X)*DCOS(X)/(DCOS(X+Y)+DCOS(X-Y)-1.0));Y = T * DATAN(T2*DSIN(Y)*DCOS(Y)/(DCOS(X+Y)+DCOS(X-Y)-1.0));}#ifdef PRINTOUTIF (JJ==II)POUT(N7,J,K,X,X,Y,Y);
#endif/*
********************************************
* Module 8: Procedure calls
********************************************
*/X = 1.0;Y = 1.0;Z = 1.0;for (I = 1; I <= N8; I++){P3(X,Y,&Z);}
#ifdef PRINTOUTIF (JJ==II)POUT(N8,J,K,X,Y,Z,Z);
#endif/*
********************************************
* Module 9: Array references
********************************************
*/J = 1;K = 2;L = 3;E1[1] = 1.0;E1[2] = 2.0;E1[3] = 3.0;for (I = 1; I <= N9; I++){P0();}
#ifdef PRINTOUTIF (JJ==II) POUT(N9,J,K,E1[1],E1[2],E1[3],E1[4]);
#endif/*
********************************************
* Module 10: Integer arithmetic
********************************************
*/J = 2;K = 3;for (I = 1; I <= N10; I++){J = J + K;K = J + K;J = K - J;K = K - J - J;}#ifdef PRINTOUTIF (JJ==II) POUT(N10,J,K,X1,X2,X3,X4);
#endif/*
********************************************
* Module 11: Standard functions
********************************************
*/X = 0.75;for (I = 1; I <= N11; I++){X = DSQRT(DEXP(DLOG(X)/T1));}
#ifdef PRINTOUTIF (JJ==II) POUT(N11,J,K,X,X,X,X);
#endif/*
********************************************
* THIS IS THE END OF THE MAJOR LOOP.
********************************************
*/if (++JJ <= II)goto IILOOP;/*
********************************************
* Stop benchmark timing at this point.
********************************************
*/// finisec = time(0);finisec = get_timer_value();//timer.reset();/*
*--------------------------------------------------------------------
* Performance in Whetstone KIP's per second is given by
*
* (100*LOOP*II)/TIME
*
* where TIME is in seconds.
*--------------------------------------------------------------------
*/double vreme;vreme = time_in_secs(finisec - startsec);if (vreme <= 0){printf("Insufficient duration- Increase the LOOP count \n");finisec = 0; startsec = 0;return 1;}printf("Loops: %ld , \t Iterations: %d, \t Duration: %.3f sec. \n",LOOP, II, vreme);KIPS = (100.0 * LOOP * II) / vreme ;if (KIPS >= 1000.0)printf("C Converted Double Precision Whetstones: %.3f MIPS \n\n", KIPS / 1000);elseprintf("C Converted Double Precision Whetstones: %.3f KIPS \n\n", KIPS);// printf("C Converted Double Precision Whetstones: %.3f MIPS \n\n", KIPS / 1000);if (continuous)goto LCONT;finisec = 0; startsec = 0;return 1;
}void PA(double E[])
{J = 0;L10:E[1] = ( E[1] + E[2] + E[3] - E[4]) * T;E[2] = ( E[1] + E[2] - E[3] + E[4]) * T;E[3] = ( E[1] - E[2] + E[3] + E[4]) * T;E[4] = (-E[1] + E[2] + E[3] + E[4]) / T2;J += 1;if (J < 6)goto L10;
}void P0(void)
{E1[J] = E1[K];E1[K] = E1[L];E1[L] = E1[J];
}void P3(double X, double Y, double *Z)
{double X1, Y1;X1 = X;Y1 = Y;X1 = T * (X1 + Y1);Y1 = T * (X1 + Y1);*Z = (X1 + Y1) / T2;
}// 原本该函数应该是用定时器实现的
double time_in_secs(uint64_t ticks)
{// scale timer down to avoid uint64_t -> double conversion in RV32
// int scale = 256;
// uint32_t delta = ticks / scale;
// uint32_t freq = get_timer_freq() / scale;
// return delta / (double)freq;int scale = 10000;
// double delta = ticks / scale; //修改前double delta = (double)(ticks*1.0) / scale;//修改后return delta;
}// 根据原有的函数接口,使用systick作为计时单元实现计时
uint64_t get_timer_value(void)
{GETMYTIME(&TickValue);return TickValue;
}#ifdef PRINTOUT
void POUT(long N, long J, long K, double X1, double X2, double X3, double X4)
{printf("%7ld %7ld %7ld %12.4e %12.4e %12.4e %12.4e\n",N, J, K, X1, X2, X3, X4);
}
#endif
在main.c添加
#include <stdio.h>printf("\nMy Benchmark example for Whetstones \n");
Whetstone(); //Call of Whetstone banchmark methode
在main.h添加
int Whetstone(void);
4 烧录测试
修改前
修改后
暂时没有具体分析细节问题,只是跑通了
修改记录
2025.2.7——可能有朋友注意到了时间上是正好5s,一般不可能这么规整,检查了一下代码,是time_in_secs()函数在转换时没有考虑到浮点导致。已修改