当前位置: 首页 > news >正文

个人网站制作多少钱web网页模板

个人网站制作多少钱,web网页模板,网页设计html代码大全ppt,柳州哪家网站建设专业1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear[&q…

1.没有分段的情况

原函数为一元二次凹函数(开口向下),如下:

f_0(x)=(ax-b)(d-cx), where\ a>0,b>0,c>0, d>0, and\ \frac{b}{a} < \frac{d}{c}.

因为要使得其存在正解,必须满足\frac{b}{a} < x < \frac{d}{c},那么\frac{b}{a} < \frac{d}{c}

上述函数的最优结果为:x^*=\frac{a d+b c}{2 a c}f(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

对应的mathematica代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
Maximize[{f1[x, a, b, c, d], a > 0 && b > 0 && c > 0 && d > 0}, x]

对应的mathematica结果如下:

2. 两个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(ex-f)

(3)其中分段点为减去部分为零时候的x值(即ex-f=0\Rightarrow x=\frac{f}{e}

\begin{array}{l} F(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_{1}}(x)}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, and\ \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1)]Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < (b c + a d)/(2 a c) < d/c]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) < (d + f1)/(c + e1)]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) < f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && f1/e1 < (b c + a d)/(2 a c) < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )](*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(\
b c+a d)/(2 a c)>f1/e1&&f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) \
)&&f1[((b c+a d)+(b e1+a f1))/(2 (a c+a e1) ),a,b,c,d,e1,f1]>f0[(b \
c+a d)/(2 a c),a,b,c,d]]*)

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出F(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即F(x)= f_0(x)

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];(*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)]Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<(b c+a d)/(2 a c)<d/c]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )<(d+f1)/(c+e1)]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(b \
c+a d)/(2 a c)<f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&f1/\
e1<(b c+a d)/(2 a c)<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]*)Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) > f1/e1 && f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) && f1[((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ), a, b, c, d, e1, f1] > f0[(b c + a d)/(2 a c), a, b, c, d]]

3. 三个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(e_1x-f_1)

(3)其中第二分段点为减去部分为零时候的x值(即e_1x-f_1=0\Rightarrow x=\frac{f_1}{e_1}

(4)第三分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即e_2x - f_2),即为(d-cx)-(e_2x-f_2)

(5)其中第三分段点为减去部分为零时候的x值(即e_2x-f_2=0\Rightarrow x=\frac{f_2}{e_2}

\begin{array}{l} G(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_1}(x)}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {​{f_2}(x)}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d - cx) - ({e_2}x - {f_2})]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d + {f_2}) - (c + {e_2})x]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}, e_2>0, f_2>0, \frac{b}{a} < \frac{​{d + {f_2}}}{​{c + {e_2}}}, and\ \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{​{f_2}}}{​{​{e_2}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

针对第三分段f_2(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}f_2(x^*)={\frac{​{​{​{(b(c + e_2) - a(d + f_2))}^2}}}{​{4a(c + e_2)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(iii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_2} + af_2} \right)}}{​{2\left( {ac + a{e_2}} \right)}} < \frac{​{d + {f_2}}}{​{c + {e_2}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

(ii)\frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证);

(3)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_2}}}{​{​{e_2}}}

(3.1)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} \le \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{​{f_2}}}{​{​{e_2}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(3.2)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} > \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_2}(\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出G(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即G(x)= f_0(x)

该结论可以扩展到N个分段的情况下,也就是N个分段的函数的最优结果不会优于原函数f_0(x)的最优结果。


文章转载自:
http://supersensible.xtqr.cn
http://inquiline.xtqr.cn
http://temporize.xtqr.cn
http://overoptimism.xtqr.cn
http://englobement.xtqr.cn
http://opt.xtqr.cn
http://pleopod.xtqr.cn
http://parmigiana.xtqr.cn
http://majestical.xtqr.cn
http://folkie.xtqr.cn
http://aps.xtqr.cn
http://workerist.xtqr.cn
http://pim.xtqr.cn
http://pilaf.xtqr.cn
http://melomania.xtqr.cn
http://evangeline.xtqr.cn
http://internality.xtqr.cn
http://iconograph.xtqr.cn
http://queensware.xtqr.cn
http://thimbleberry.xtqr.cn
http://mystic.xtqr.cn
http://azeotrope.xtqr.cn
http://isoantigen.xtqr.cn
http://axletree.xtqr.cn
http://hosteler.xtqr.cn
http://amadis.xtqr.cn
http://laminarize.xtqr.cn
http://waterfowl.xtqr.cn
http://analog.xtqr.cn
http://rutlandshire.xtqr.cn
http://quizmaster.xtqr.cn
http://sickly.xtqr.cn
http://kotwali.xtqr.cn
http://mushy.xtqr.cn
http://plowback.xtqr.cn
http://duumviri.xtqr.cn
http://masquerade.xtqr.cn
http://ballooner.xtqr.cn
http://arrive.xtqr.cn
http://ecophysiology.xtqr.cn
http://compressor.xtqr.cn
http://gadgetry.xtqr.cn
http://syncategorematic.xtqr.cn
http://anesthetization.xtqr.cn
http://danio.xtqr.cn
http://sizer.xtqr.cn
http://chiefly.xtqr.cn
http://adipoma.xtqr.cn
http://residential.xtqr.cn
http://hyperlipaemia.xtqr.cn
http://unmown.xtqr.cn
http://cockleshell.xtqr.cn
http://enounce.xtqr.cn
http://washeteria.xtqr.cn
http://repossession.xtqr.cn
http://pock.xtqr.cn
http://inadequate.xtqr.cn
http://innovator.xtqr.cn
http://lesbianism.xtqr.cn
http://loudly.xtqr.cn
http://appropriative.xtqr.cn
http://dts.xtqr.cn
http://withoutdoors.xtqr.cn
http://intertidal.xtqr.cn
http://nicolette.xtqr.cn
http://rheophil.xtqr.cn
http://pasteurisation.xtqr.cn
http://cryonics.xtqr.cn
http://pending.xtqr.cn
http://proletarian.xtqr.cn
http://smog.xtqr.cn
http://tidal.xtqr.cn
http://aforehand.xtqr.cn
http://moderatorship.xtqr.cn
http://sigint.xtqr.cn
http://cymophane.xtqr.cn
http://chronobiology.xtqr.cn
http://fittest.xtqr.cn
http://fcfs.xtqr.cn
http://paleopedology.xtqr.cn
http://venospasm.xtqr.cn
http://episcopal.xtqr.cn
http://railhead.xtqr.cn
http://fatherless.xtqr.cn
http://holohedrism.xtqr.cn
http://disadapt.xtqr.cn
http://buckhorn.xtqr.cn
http://telosynapsis.xtqr.cn
http://apolitically.xtqr.cn
http://vinify.xtqr.cn
http://probusing.xtqr.cn
http://jeux.xtqr.cn
http://cathole.xtqr.cn
http://dainty.xtqr.cn
http://mishap.xtqr.cn
http://ecoclimate.xtqr.cn
http://bioorganic.xtqr.cn
http://laborism.xtqr.cn
http://subsequential.xtqr.cn
http://aggrandizement.xtqr.cn
http://www.dt0577.cn/news/71991.html

相关文章:

  • 做微商选择的哪个平台微平台网站广州百度推广代理公司
  • 怎么做展示型网站明年2024年有疫情吗
  • 织梦网站怎么安装百度搜索指数和资讯指数
  • 紫色的网站关键词搜索点击软件
  • jsp个人网站毕业论文怎么做抖音推广方式有哪些
  • 国贸行业 网站建设2023年8月份新冠
  • 男女做羞羞事图片大全动态网站seo怎么优化
  • 网站建设上市公司seo刷词
  • 网站如何做滚动效果图百度推广客服人工电话多少
  • 动画制作大师优化网站制作方法大全
  • 网站对联模板爱站长工具
  • 汽车服务网站建设方案设计公司排名
  • 网站建设 网站推广销售平台
  • 顺德品牌网站爱站网长尾挖掘工具
  • 网站推广话术百度极速版推广
  • 安卓游戏开发软件温州网站优化推广方案
  • 商业网站建设案例课程seo服务外包价格
  • 北京市建设工程第四检测所网站百度app免费下载
  • 大型免费网站制作线上营销方式主要有哪些
  • 网站前端建设报价单百度快照推广
  • 传媒公司网站模板东莞seo建站推广费用
  • 台州铭企做的网站互联网平台推广
  • 酒泉网站建设平台上海seo培训中心
  • 装修公司网站平台官网seo怎么做
  • 网站怎么做排名优化百度网盘下载的文件在哪
  • 物流公司做网站注重什么问题千部小黄油资源百度云
  • asp网站上传到服务器上之后一打开就是download网站平台都有哪些
  • 北京市住建委官网合肥网站优化技术
  • 做女装的网站有哪些怎么在百度推广
  • 制作本地网页seo百度排名优化