当前位置: 首页 > news >正文

南京做网站的有哪些如何提高自己在百度的排名

南京做网站的有哪些,如何提高自己在百度的排名,电话推销网站建设,网站的优点这是我的第一篇学习笔记,如有差错,请海涵... 目录 引子(大可跳过) 卷积形式 算法流程 OR卷积 解析 AND卷积 XOR卷积 模板 引子 首先,看下图 数一数,会发现你有一只兔子,现在&#xff…

这是我的第一篇学习笔记,如有差错,请海涵...

目录

引子(大可跳过)

卷积形式

算法流程

OR卷积

解析

AND卷积

XOR卷积

模板


引子

首先,看下图

数一数,会发现你有一只兔子,现在,我再给你一只兔子

再数一数,会发现什么?没错,你有两只兔子,也就是说,1+1=2

这就是算数的基本原理了,聪明的你懂了吗?

好,我们可以学FWT了..


卷积形式

我们回忆一下多项式乘法的式子:

C_{i}=\sum_{j,k}A_j*B_k\;(j+k==i)

这个可以用FFT或NTT优化到O(nlogn)求出每一个Ci,但不是本章的重点,只是引出卷积的概念:

C_{i}=\sum_{j,k}A_j*B_k\;(f(j,k)==i)

而FWT主要是解决以下三种卷积形式:

C_{i}=\sum_{j,k}A_j*B_k\;(j \or\;k==i)

C_{i}=\sum_{j,k}A_j*B_k\;(j\and\;k==i)

C_{i}=\sum_{j,k}A_j*B_k\;(j\;xor\;k==i)


算法流程

卷积的算法原理就是把一个数列快速转换成另一种数列,然后每一位元素之间就可以直接单独相乘计算,最后再把答案数列快速转换回来。

FFT体现这个原理的方式就是把多项式转换成点值表达式,然后由于每个点的横坐标相同,纵坐标直接乘起来就得到最终的点值表达式,最后把答案的多项式表达通过点值表达式解出来。

那FWT怎么做呢?

首先就是数列长度的问题,我们知道,多项式乘法最终会得到一个长为lenA+lenB-1的多项式,而考虑位运算的卷积——很容易想出,最终的数列长度一定是2^n,n是A、B大小转换为二进制后的数的最大位数。

我们设数列A的转换数列是DWT(A),转换后的数列A的原数列是IDWT(A)

既然它是位运算,那么我们就按位分治

我们从二进制最高位考虑起,每次把当前位为0或1的元素分开成两个数列,很显然,由于数列长度为2^n,直接每次从中间分开就好了,

那么

DWT(A)=\begin{cases} \{DWT(aA_0+bA_1),DWT(cA_0+dA_1)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这里的“{  ,  }”是把两个数列前后拼一起,A+B是把两个数列排头对齐,然后每一位相加。

具体的系数a,b,c,d是怎么样,or , and 和 xor 的情况是不一样的。

OR卷积

因为是按位或,所以当前位为1的对0没有影响,而0的元素都要对1有影响(0可以 | 1变成1,但是1怎么 | 都不会变成0),于是它的DWT就是这样

DWT(A)=\begin{cases} \{DWT(A_0),DWT(A_0+A_1)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这样DWT(A)[i]就相当于下标按位或 i 后等于 i 的元素和,转换回去刚好就把当前位为1的减去为0的就行,即

IDWT(A)=\begin{cases} \{IDWT(A_0),IDWT(A_1)-IDWT(A_0)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这就是DWT的逆运算形式吧。

ps:巧合的是,这个玩意其实也是快速莫比乌斯变换FMT,两个是一样的,完全没有区别,也就是说DWT(A)[i]其实也是i的所有子集元素和。

举个栗子

A=\{ a_0,a_1\},B=\{ b_0,b_1\}

\Rightarrow DWT(A)=\{ a_0,a_0+a_1\}\;,\;DWT(B)=\{ b_0,b_0+b_1\}

\begin{align*} \Rightarrow DWT(C) &= \{ a_0b_0,(a_0+a_1)(b_0+b_1)\}\\ &= \{ a_0b_0,a_0b_0+a_0b_1+a_1b_0+a_1b_1\}\\ &= \{ a_0b_0,a_0b_0+(a_0b_1+a_1b_0+a_1b_1)\} \end{align*}

\Rightarrow C=\{ a_0b_0,a_0b_1+a_1b_0+a_1b_1\}

解决了!

解析

为什么这样是对的呢?

我们前面说了,DWT(A)[i] 其实也是 i 的所有子集元素和,

那么 DWT(C)[i] = DWT(A)[i] * DWT(B)[i] 就是 A 中 i 的子集元素分别与 B 中 i 的子集元素两两相乘,即

\begin{align*}DWT(C)[i] &= DWT(A)[i]*DWT(B)[i]\\ &= (\sum_{j\;\subseteq\;i}A[j])*(\sum_{k\;\subseteq\;i}B[k])\\ &= \sum_{j\;or\;k\;\subseteq\;i}A[j]*B[k]\\ &= \sum_{d\;\subseteq\;i}\;\;\;\sum_{j\;or\;k=d}A[j]*B[k]\\ &= \sum_{d\;\subseteq\;i}C[d] \end{align*}

化简出来即是 C 中 i 的子集元素和

AND卷积

和or很相像

因为是按位与,所以当前位为0的对1没有影响,而1的元素都要对0有影响(1可以&0变成0,但是0怎么&都不会变成1),于是它的DWT就是这样

DWT(A)=\begin{cases} \{DWT(A_0+A_1),DWT(A_1)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这样DWT(A)[i]就相当于下标按位与 i 后等于 i 的元素和,转换回去刚好就把当前位为0的减去为1的就行,即

IDWT(A)=\begin{cases} \{IDWT(A_0)-IDWT(A_1),IDWT(A_1)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这又刚好是DWT的逆运算了。

再举个栗子

A=\{ a_0,a_1\},B=\{ b_0,b_1\}

\Rightarrow DWT(A)=\{ a_0+a_1,a_1\}\;,\;DWT(B)=\{ b_0+b_1,b_1\}

\begin{align*} \Rightarrow DWT(C) &= \{(a_0+a_1)(b_0+b_1),a_1b_1\}\\ &= \{ a_0b_0+a_0b_1+a_1b_0+a_1b_1,a_1b_1\}\\ &= \{ (a_0b_0+a_0b_1+a_1b_0)+a_1b_1,a_1b_1\} \end{align*}

\Rightarrow C=\{ a_0b_0+a_0b_1+a_1b_0,a_1b_1\}

可以类似 OR 运算的解析,相当于把 OR 的二进制位取反后考虑

XOR卷积

这个就比较特殊了,我们没办法解析,只能领会沃尔什大神的巧智。

我们从栗子里会发现,对于异或,我们最后其实要把 a0b0+a1b1 和 a1b0+a0b1 单独刨出来。(这不是废话!)

那么在DWT(C)中,a0b0的系数要和a1b1一样,a1b0的系数要和a0b1一样

……

于是它的DWT就是这样!:

DWT(A)=\begin{cases} \{DWT(A_0+A_1),DWT(A_0-A_1)\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这样DWT(C)就符合条件了,它的IDWT是

IDWT(A)=\begin{cases} \{\frac{IDWT(A_0)+IDWT(A_1)}{2},\frac{IDWT(A_0)-IDWT(A_1)}{2}\} & (len_A>1)\\ A & (len_A=1) \end{cases}

这个得看栗子才明白

A=\{ a_0,a_1\},B=\{ b_0,b_1\}

\Rightarrow DWT(A)=\{ a_0+a_1,a_0-a_1\}\;,\;DWT(B)=\{ b_0+b_1,b_0-b_1\}

\begin{align*} \Rightarrow DWT(C) &= \{(a_0+a_1)(b_0+b_1),(a_0-a_1)(b_0-b_1)\}\\ &= \{ a_0b_0+a_0b_1+a_1b_0+a_1b_1,a_0b_0-a_0b_1-a_1b_0+a_1b_1\}\\ &= \{ (a_0b_0+a_1b_1)+(a_1b_0+a_0b_1),(a_0b_0+a_1b_1)-(a_1b_0+a_0b_1)\} \end{align*}

\Rightarrow C=\{ a_0b_0+a_1b_1,a_1b_0+a_0b_1\}


模板

下面是非递归版本的DWT以及IDWT,m为数列长度(m=2^n

//qm(x,y) 表示 x % y , zxy 是模数(zxyyyds!)
inline void DWTOR(int *s,int m) {for(int k = m;k > 1;k >>= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {int s0 = s[j-(k>>1)],s1 = s[j];s[j] = qm((s0 +0ll+ s1) , zxy);}}}return ;
}
inline void IDWTOR(int *s,int m) {for(int k = 2;k <= m;k <<= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {int s0 = s[j-(k>>1)],s1 = s[j];s[j] = qm((s1 +0ll+ zxy - s0) , zxy);}}}return ;
}inline void DWTAND(int *s,int m) {for(int k = m;k > 1;k >>= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {LL s0 = s[j-(k>>1)],s1 = s[j];s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);}}}return ;
}
inline void IDWTAND(int *s,int m) {for(int k = 2;k <= m;k <<= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {int s0 = s[j-(k>>1)],s1 = s[j];s[j-(k>>1)] = qm((s0 +0ll+ zxy - s1) , zxy);}}}return ;
}inline void DWTXOR(int *s,int m) {for(int k = m;k > 1;k >>= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {int s0 = s[j-(k>>1)],s1 = s[j];s[j] = qm((s0 +0ll+ zxy - s1) , zxy);s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy);}}}return ;
}
inline void IDWTXOR(int *s,int m) {for(int k = 2;k <= m;k <<= 1) {for(int i = 0;i < m;i += k) {for(int j = i+(k>>1);j < i+k;j ++) {int s0 = s[j-(k>>1)],s1 = s[j];s[j-(k>>1)] = qm((s0 +0ll+ s1) , zxy) *1ll* inv2 % zxy;s[j] = qm((s0 +0ll+ zxy - s1) , zxy) *1ll* inv2 % zxy;}}}return ;
}

 FWT就到这里了,大家都懂了吧 

深入

OneInDark 的深入理解过程,道出了 FWT 的实质!

http://www.dt0577.cn/news/55270.html

相关文章:

  • 教育网站集群建设申请广告营销公司
  • wordpress插件使用数量杭州seo网站
  • 政府网站建设总体情况软文时光发稿平台
  • 贵州省建设网官方网站企业网站优化技巧
  • 大型网站建设费用怎么快速优化网站
  • 网站建设需要的一些技术aso优化方案
  • 做网站 毕业设计seo是什么意思seo是什么职位
  • 加入google广告wordpress网站建设优化的技巧
  • ppt模板免费下载网站有哪些广州网站推广运营
  • 做app网站公司名称免费外链发布
  • 义乌做公司网站腾讯推广平台
  • 网站制作切图新闻早知道
  • 茌平建设局网站山东省住房和城乡建设厅
  • 公司logo需要注册商标吗百度优化推广
  • 那种软件可以做视频网站百度论坛
  • 制作网站需要域名还需要什么网站如何做seo排名
  • 如果做网站运营新媒体运营培训
  • 做网站的用什么主机好seo还可以做哪些推广
  • 湖南省建设信息网站优化大师客服电话
  • 如何做个网站做cpa广告推广 精准引流
  • 专业代做网站安徽建站
  • 广州做商城网站东莞网络营销网络推广系统
  • python基础教程免费成都排名seo公司
  • 做网站ps文字有锯齿关键词排名的工具
  • 网站的设计过程链接生成器在线制作
  • 礼盒包装设计黄山seo推广
  • 网站论坛做斑竹营销手段和营销方式
  • 手机网站技巧公司想建个网站怎么弄
  • 好看网站的浏览器免费刷粉网站推广免费
  • 官方网站建设流程百度怎么精准搜索