当前位置: 首页 > news >正文

怎么做饲料电商网站抖音搜索seo

怎么做饲料电商网站,抖音搜索seo,学网络工程师,湖南做网站磐石网络本文仅供学习使用 本文参考: B站:DR_CAN 《控制之美(卷1)》 王天威 《控制之美(卷2)》 王天威 Dr. CAN学习笔记-Ch00 - 数学知识基础 Part2 4. Ch0-4 线性时不变系统中的冲激响应与卷积4.1 LIT System:Linear Time Invariant4.2 卷积 Convolution4.3 单位冲激 Unit Impulse—…

本文仅供学习使用
本文参考:
B站:DR_CAN
《控制之美(卷1)》 王天威
《控制之美(卷2)》 王天威

Dr. CAN学习笔记-Ch00 - 数学知识基础 Part2

  • 4. Ch0-4 线性时不变系统中的冲激响应与卷积
    • 4.1 LIT System:Linear Time Invariant
    • 4.2 卷积 Convolution
    • 4.3 单位冲激 Unit Impulse——Dirac Delta
    • 4.4 LIT 线性时不变系统状态空间方程的解
  • 5. Ch0-5 Laplace Transform of Convolution卷积的拉普拉斯变换
  • 6. Ch0-6 复数Complex Number
  • 7. Ch0-7 欧拉公式的证明
  • 8. Ch0-8 Matlab/Simulink传递函数Transfer Function
  • 9. Ch0-9 阈值选取-机器视觉中应用正态分布和6-sigma
  • 10. 连续系统离散化
    • 10.1 系统离散化的基本概念
    • 10.2 连续系统状态空间方程离散化

4. Ch0-4 线性时不变系统中的冲激响应与卷积

4.1 LIT System:Linear Time Invariant

  • 运算operator : O { ⋅ } O\left\{ \cdot \right\} O{}
    I n p u t O { f ( t ) } = o u t p u t x ( t ) \begin{array}{c} Input\\ O\left\{ f\left( t \right) \right\}\\ \end{array}=\begin{array}{c} output\\ x\left( t \right)\\ \end{array} InputO{f(t)}=outputx(t)

  • 线性——叠加原理superpositin principle
    { O { f 1 ( t ) + f 2 ( t ) } = x 1 ( t ) + x 2 ( t ) O { a f 1 ( t ) } = a x 1 ( t ) O { a 1 f 1 ( t ) + a 2 f 2 ( t ) } = a 1 x 1 ( t ) + a 2 x 2 ( t ) \begin{cases} O\left\{ f_1\left( t \right) +f_2\left( t \right) \right\} =x_1\left( t \right) +x_2\left( t \right)\\ O\left\{ af_1\left( t \right) \right\} =ax_1\left( t \right)\\ O\left\{ a_1f_1\left( t \right) +a_2f_2\left( t \right) \right\} =a_1x_1\left( t \right) +a_2x_2\left( t \right)\\ \end{cases} O{f1(t)+f2(t)}=x1(t)+x2(t)O{af1(t)}=ax1(t)O{a1f1(t)+a2f2(t)}=a1x1(t)+a2x2(t)

  • 时不变Time Invariant:
    O { f ( t ) } = x ( t ) ⇒ O { f ( t − τ ) } = x ( t − τ ) O\left\{ f\left( t \right) \right\} =x\left( t \right) \Rightarrow O\left\{ f\left( t-\tau \right) \right\} =x\left( t-\tau \right) O{f(t)}=x(t)O{f(tτ)}=x(tτ)

4.2 卷积 Convolution

卷积与微分方程:

  • 线性时不变系统的输出与输入之间是卷积的关系
  • 单位冲激响应可以完整地描述线性时不变系统。
  • 微分方程可以直接描述系统输入与输出之间的卷积关系。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/1dd93a8fa99f4c5ab602e564d9206728.pn
在这里插入图片描述

4.3 单位冲激 Unit Impulse——Dirac Delta

单位冲击函数(Unit Impulse),又称为狄拉克函数(Dirac Delta),是一个宽度为0、面积为1的函数,这是一个纯数学函数

LIT系统, h ( t ) h(t) h(t)可以完全定义系统, 是系统对于冲激函数δ(t)(mpulse Response) 的冲激响应

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/44d3e236647442a3ba8a85c7024b461b.png
在这里插入图片描述

4.4 LIT 线性时不变系统状态空间方程的解

状态空间方程是指将系统描述为一组关于状态和输人的微分方程以及代表输出的代数方程的形式。
d x ( t ) d t = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) + D u ( t ) \frac{\mathrm{d}x\left( t \right)}{\mathrm{d}t}=Ax\left( t \right) +Bu\left( t \right) \\ y\left( t \right) =Cx\left( t \right) +Du\left( t \right) dtdx(t)=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t)
A A A是一个 n × n n\times n n×n 矩阵,表示系统状态变量之间的关系,称为状态矩阵或者系统矩阵
B B B 是一个 n × p n\times p n×p 矩阵,表示输人对状态量的影响,称为输入矩阵或者控制矩阵
C C C 是一个 m × n m\times n m×n 矩阵,表示系统的输出与系统状态变量的关系,称为输出矩阵
D D D 是一个 m × p m\times p m×p 矩阵,表示系统的输人直接作用在系统输出的部分,称为直接传递矩阵

在这里插入图片描述
在这里插入图片描述

结合前面的分析可以发现,当矩阵 A A A的特征值实部部分都小于0时,状态转移矩阵 e A ( t − t 0 ) e^{A(t-t_0)} eA(tt0)将随着时间的增加趋向于0,这是系统稳定性分析的基础。

对于时变系统,在一般情况下不容易找到解析解,多采用数值求解的方法,这不在本书的讨论范围之内。

5. Ch0-5 Laplace Transform of Convolution卷积的拉普拉斯变换

线性时不变系统 : LIT System
冲激响应:Impluse Response
卷积:Convolution

Laplace Transform : X ( s ) = L [ x ( t ) ] = ∫ 0 ∞ x ( t ) e − s t d t X\left( s \right) =\mathcal{L} \left[ x\left( t \right) \right] =\int_0^{\infty}{x\left( t \right) e^{-st}}\mathrm{d}t X(s)=L[x(t)]=0x(t)estdt

Convolution : x ( t ) ∗ g ( t ) = ∫ 0 t x ( τ ) g ( t − τ ) d τ x\left( t \right) *g\left( t \right) =\int_0^t{x\left( \tau \right) g\left( t-\tau \right)}\mathrm{d}\tau x(t)g(t)=0tx(τ)g(tτ)dτ

证明: L [ x ( t ) ∗ g ( t ) ] = X ( s ) G ( s ) \mathcal{L} \left[ x\left( t \right) *g\left( t \right) \right] =X\left( s \right) G\left( s \right) L[x(t)g

http://www.dt0577.cn/news/40814.html

相关文章:

  • 东莞做网站要多少钱上海今日头条新闻
  • 开发帮app下载做好的网站怎么优化
  • 可以先做网站后备案么网站设计开发网站
  • 做公益网站需要哪些部门认证此网站不支持下载视频怎么办
  • 珠海正规网站制作系统品牌传播策划方案
  • 营销型网站重要特点是?宁波seo外包平台
  • 设计兼职网站有哪些百度指数分析案例
  • 公司网站用什么系统优化设计七年级下册数学答案
  • 个人网站搭建软件seo网站系统
  • 做网站用不用云服务器站长工具精品
  • 南通建设局网站查询下载百度免费版
  • 最火爆的网络游戏排行榜关键词排名手机优化软件
  • dreamweaver做网站教程口碑营销策划方案
  • 哪有做网站的定单超级外链推广
  • 湖南公众信息网官网seo顾问是什么
  • 可以自己做网站建网站需要什么
  • 网站开发什么自己如何建立网站
  • 发布编程任务平台宁海关键词优化怎么优化
  • dedecms行业协会网站织梦模板创建自己的网站怎么弄
  • 桂林网站推广爱站网能不能挖掘关键词
  • 泰州企业网站模板建站排名优化服务
  • 白云营销型网站建设温州云优化seo
  • 个人如何制作网站源码营业推广方案怎么写
  • 自适应网站导航是怎么做的详细的营销推广方案
  • 上海临港自贸区注册公司深圳seo培训
  • 深圳界面设计seo网站制作优化
  • 淘宝客建站模板友情链接大全
  • java网站建设搜索引擎关键词怎么优化
  • 网站后台在哪里拓客最有效方案
  • wordpress返回上一个网页南宁seo内部优化