当前位置: 首页 > news >正文

小程序开发平台哪家的好一些seo排名工具提升流量

小程序开发平台哪家的好一些,seo排名工具提升流量,优惠网站怎么做,邯郸网站设计怎么注册递推算法及常见示例(C、Python实现) 递推算法是一种用若干步可重复运算来描述复杂问题的方法,它是一种序列计算中的常用算法。通常是通过计算前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次…

递推算法及常见示例(C++、Python实现)

递推算法是一种用若干步可重复运算来描述复杂问题的方法,它是一种序列计算中的常用算法。通常是通过计算前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。递推关系通常表示为一种递推公式。

下面是一些常见的例子。

★斐波那契数列:斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21,34,55,89...

这个数列从第3项开始,每一项都等于前两项之和。

斐波那契数列是一种经典的递推问题,它的定义是:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)。通过这个递推关系式,可以求解斐波那契数列的第 n 项。

☆C++实现:

#include <iostream>  
using namespace std;  int main() {  int n;  cout << "请输入项数 n 的值: ";  cin >> n; if (n <= 1) {  return n;  }  int f1 = 0, f2 = 1, fn;  for (int i = 2; i <= n; i++) {  fn = f1 + f2;  f1 = f2;  f2 = fn;  }  cout << "斐波那契数列的第 " << n << " 项为:" << fn << endl;  return 0;  
}

下面改用使用自定义函数实现:

#include <iostream>  
using namespace std;  int fibonacci(int n) {  if (n <= 1) {  return n;  }  int f1 = 0, f2 = 1, fn;  for (int i = 2; i <= n; i++) {  fn = f1 + f2;  f1 = f2;  f2 = fn;  }  return fn;  
}  int main() {  int n;  cout << "请输入项数 n 的值: ";  cin >> n;  cout << "斐波那契数列的第 " << n << " 项为:" << fibonacci(n) << endl;  return 0;  
}

☆Python实现:

n = int(input("请输入 n 的值:"))
if n <= 1:  fn = nf1, f2 = 0, 1 for i in range(2, n+1):  fn = f1 + f2  f1, f2 = f2, fnprint("斐波那契数列的第 {} 项为:{}".format(n, fn))

下面改用使用自定义函数实现:

def fibonacci(n):  if n <= 1:  return nf1, f2 = 0, 1 for i in range(2, n+1):  fn = f1 + f2  f1, f2 = f2, fn  return fn  n = int(input("请输入 n 的值:"))  
print("斐波那契数列的第 {} 项为:{}".format(n, fibonacci(n)))

★等差数列求和: 1, 3, 5, 7, 9 是一个公差为 2 的等差数列。等差数列的求和问题可以通过递推算法解决。设等差数列的首项为 a1,公差为 d,第 n 项为 an,则 an=a1+(n-1)d。要求等差数列的前 n 项和,可以递推得到:Sn=a1+a2+...+an=n/2[2a1+(n-1)d]。

☆C++实现:

#include <iostream>  
using namespace std;int main() {  int a1, d, n;  cout << "输入第一项、公差和项数:";  cin >> a1 >> d >> n;  int sum = 0;  for (int i = 1; i <= n; i++) {  sum += a1 + (i - 1) * d;  }  cout << "等差数列的前 " << n << " 项和为:" << sum << endl;  return 0;  
}

☆Python实现:

a1 = int(input("输入第一项: "))  
d = int(input("输入公差: "))  
n = int(input("输入项数: "))  
sum = 0  
for i in range(1, n+1):  sum += a1 + (i - 1) * dprint("等差数列的前 {} 项和为:{}".format(n,sum))

★等比数列求和:1, 2, 4, 8, 16 是一个公比为 2 的等比数列。等比数列的求和问题也可以通过递推算法解决。设等比数列的首项为 a1,公比为 r,第 n 项为 an,则 an=a1r^(n-1)。要求等比数列的前 n 项和,可以递推得到:Sn=a1(1-r^n)/(1-r)。

☆C++实现:

#include <iostream>
#include <cmath> // 引入 pow()
using namespace std;int main() {    double a1, r, n;    cout << "输入第一项、公比和项数:";    cin >> a1 >> r >> n;    double sum = 0;    for (int i = 1; i <= n; i++) {    sum += a1 * pow(r, i - 1);    }    cout << "等比数列的前 " << n << " 项和为:" << sum << endl;    return 0;    
}

☆Python实现:

a1 = float(input("输入第一项:"))  
r = float(input("输入公比:"))  
n = int(input("输入项数:"))  sum = 0  
for i in range(1, n + 1):  sum += a1 * (r ** (i - 1))  print("等比数列的前 {} 项和为:{}".format(n, sum))

、递推、递归和迭代区别

递推是通过已知序列元素来计算其他元素,递归是函数调用自身,迭代是通过重复执行操作来解决问题。

递归和迭代可参见:https://blog.csdn.net/cnds123/article/details/132409886

http://www.dt0577.cn/news/34900.html

相关文章:

  • 网络广告推广是怎么做的整站优化seo平台
  • 贵阳网站建设在线短视频营销的特点
  • 齐大胜请于果做网站是第几集技术培训班
  • 宜州网站建设服务百度seo怎么提高排名
  • 做网站 的主要收获专业代写软文
  • 已有的网站如何做排名优化查询网站备案信息
  • 广州做网站优化公司报价推广互联网推广
  • 做外贸上什么网站网络营销的渠道
  • 有哪些网站是免费学做网页的公司网站设计哪家好
  • 同一个wifi下_我如何用手机访问我用我电脑做服务器的网站上海网站搜索排名优化哪家好
  • 网站建设意义模板运营是做什么的
  • 顶级ppt欣赏杭州网站优化公司
  • 建筑工程招投标文军seo
  • 建站公司 网站营销策略ppt
  • 网站开发需要哪些知识推广信息发布平台
  • 男女做那个是的视频网站网络推广免费平台
  • 北京网站建设公司空间续费北京刷关键词优化排名
  • 买过域名之前就可以做网站了吗?网络推广员的日常工作
  • 如何查网站处罚过世界杯最新排名
  • 黄永玉的艺术人生潍坊seo计费
  • 工业和信息化部党组书记百度seo排名工具
  • 重庆公司网站建设周口网站seo
  • 集宁网站建设SEO优化最近国际新闻
  • 网站开发安全维护seo外包上海
  • 住房建设部官方网站公关负面处理公司
  • 深圳房地产网站设计昆明seo优化
  • 个人网站备案涉及支付宝百度竞价推广收费
  • 沧州英文模板建站营销推广外包公司
  • 网站抓取超时错误微信小程序官网
  • 产品展示网站源码php推广app是什么工作