当前位置: 首页 > news >正文

中国时政新闻墨子学院seo

中国时政新闻,墨子学院seo,响应式网站设计尺寸,wordpress内外网访问堆排序 详解 堆排序代码实现 排序: 排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性: 假定在待排序的记录序列中,存在多个具有相同的关键字的记录&#xff0c…

在这里插入图片描述

堆排序 详解

  • 堆排序
  • 代码实现

排序: 排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性: 假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中, r[i] = r[j], 且 r[i] 在 r[j] 之前,而在排序后的序列中, r[i] 仍在 r[j] 之前,则称这种排序算法是稳定的;否则称为不稳定的。
(注意稳定排序可以实现为不稳定的形式, 而不稳定的排序实现不了稳定的形式)

在这里插入图片描述

内部排序: 数据元素全部放在内存中的排序。

外部排序: 数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

堆排序

堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

为什么排升序建大堆?

  • 因为假如排升序建小堆的话, 那么 我们只能得到最小的数字这一个, 同时堆的结构已经被破坏了, 因为我们直到最小值之后肯定要把这个最小值拿出来, 让剩下的元素进行排序, 也就是说堆的根节点下标要从 1 开始了, 这样就需要重新建堆了, 而建堆的时间复杂度是 O(N), 这样每选出来一个数, 就建一次堆, 总的时间复杂度就是 O(N*N) 了, 完全没有用上堆的优势。
  • 但是假如排升序建大堆的话, 每次我们能选出来最大的值, 然后把它与最后位置的元素进行交换, 那么堆的根节点的位置还是从 0 开始,唯一可能不满足堆的性质情况就是 根节点小于 其他节点, 此时只需要 将根节点进行向下调整算法即可,不用重新建堆

友情链接:堆的讲解

基本思想: 建堆和排序。

  • 建堆(Heapify):
  1. 首先,将待排序的数组视为一个完全二叉树。
  2. 从数组的最后一个非叶子节点开始,逐个向前处理,对每个节点执行向下调整算法(将较大的元素交换到子节点的位置),直至整个数组构建成一个最大堆(Max Heap)或最小堆(Min Heap)。
  3. 最大堆的特点是每个节点的值都大于或等于其子节点的值,最小堆则相反,每个节点的值都小于或等于其子节点的值。
  • 排序:
  1. 一旦构建好堆,堆顶元素就是最大(最小)元素。
  2. 将堆顶元素与堆的最后一个元素交换位置,然后将堆的大小减 1。
  3. 对新的堆顶元素执行一次下沉操作,将新的最大(最小)元素浮到堆顶。
  4. 重复上述步骤,直到堆的大小为 1,排序完成。

堆排序的关键在于如何维护堆的性质,即使交换元素后,仍然保持堆的性质。这是通过向下调整操作来实现的,确保每次交换后最大(最小)元素移到堆的顶部。

在这里插入图片描述

代码实现

    public static void heapSort(int[] arr) {int len = arr.length;// 排升序// 建大堆// 从最后一个非叶子节点进行向下调整for (int i = (len-1-1)/2; i >= 0; i--) {shiftDown(arr, i, len);}// 排序// 从最后一个节点开始与第一个节点交换位置for (int i = len-1; i > 0; i--) {// 最大值放到最后面swap(arr, 0, i);// 交换完成后重新调整堆, 注意 此时堆的大小要 - 1, 但是 这正好与 i 相同, 所以直接使用了 ishiftDown(arr, 0, i);}}/***  向下调整算法*/public static void shiftDown(int[] arr, int index, int len) {int parent = index;int child = parent * 2 + 1;// 一直向下调整至符合堆 或者 至最后一个节点while (child < len) {if (child+1 < len && arr[child+1] > arr[child]) {child++;}if (arr[child] > arr[parent]) {// 交换节点swap(arr, parent, child);// 继续向下调整parent = child;child = parent * 2 + 1;} else {// 调整完成break;}}}

总结:

  • 时间复杂度: O(N*logN)
  • 空间复杂度: O(1)
  • 是不稳定排序: 向下调整过程中, 可能相对顺序发生变化
  • 对数据不敏感: 不管原本数据怎么分布, 都要先建堆, 然后排序
  • 相对于快速排序和归并排序,堆排序通常效率较低,因为它的数据访问模式不够连续,可能导致缓存不命中

以上就是对堆排序的讲解, 希望能帮到你 !
评论区欢迎指正 !

http://www.dt0577.cn/news/28811.html

相关文章:

  • 长沙英文网站建设公司seo网站搭建是什么
  • 中英文网站建设方案网站搭建关键词排名
  • Seo与网站推广的技术对比培训机构有哪些
  • 如何做网站活动惠州百度seo哪家好
  • ps做兼职在什么网站可以找到重庆seo排名
  • 办公用品网站建设搜索引擎调词工具
  • 银川网站建设有哪些合肥百度搜索优化
  • 网站追踪如何做微信小程序开发平台
  • 做网站最清晰的字体seo网络营销是什么意思
  • 营销网站设计实验合肥做网站哪家好
  • 网站建设服务器配置营销活动策划方案
  • wordpress seo by yoast中文版杭州seo俱乐部
  • asp动态网页设计上海最大的seo公司
  • 微信网站如何开发百度关键词排名qq
  • 如何更换网站服务器新闻源发稿平台
  • 网站开发 学习如何推广app让别人注册
  • wordpress关于页面seo培训课程
  • 如何向百度提交网站苏州seo免费咨询
  • 网站备案机构足球队世界排名榜
  • 多商户开源商城攀枝花seo
  • 时代创信网站设计 北京代运营靠谱吗
  • 开封建设教育协会网站新闻发布的网站
  • 怎么在网站做自己的产品广告制作网页
  • 昨天正常的网站突然显示建设中公司网站建设北京
  • 上海专业网站建设费腾讯会议开始收费
  • 购物商城网站开发公司网站优化技术
  • 没有做老千的斗牛网站上海关键词优化报价
  • 家庭电脑做网站广告推广策划
  • 专门做画册的网站谷歌搜索引擎363入口
  • seo是搜索引擎优化吗万能优化大师下载