当前位置: 首页 > news >正文

电子政务网站建设的实验体会策划公司一般怎么收费

电子政务网站建设的实验体会,策划公司一般怎么收费,厦门 网站建设 网站开发 未来网络,河南中国建设厅官方网站本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录联合熵条件熵联合…

本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。

文章目录

      • 联合熵
      • 条件熵

联合熵

联合集 XY 上, 对联合自信息 I(xy)I(x y)I(xy) 的平均值称为联合熵:

H(XY)=Ep(xy)[I(x⇌y)]=−∑x∑yp(xy)log⁡p(xy)\begin{array}{l} H(X Y)=\underset{p(x y)}{E}[I(x \rightleftharpoons y)] \\ =-\sum_{x} \sum_{y} p(x y) \log p(x y) \end{array} H(XY)=p(xy)E[I(xy)]=xyp(xy)logp(xy)
当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,,Xn) , 有

H(X)=−∑X1,X2,…,Xnp(x1,x2,…,xn)log⁡p(x1,x2,…,xn)H(\mathbf{X})=-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right) H(X)=X1,X2,,Xnp(x1,x2,,xn)logp(x1,x2,,xn)
信息熵与热熵的关系

信息熵的概念是借助于热熵的概念而产生的。

  1. 信息熵与热熵含义相似

  2. 信息熵与热熵的区别:

    • 信息熵的不增原理
    • 热熵不减原理
  3. 热熵的减少等于信息熵的增加。

条件熵

联合集 XY\mathbf{X Y}XY 上, 条件自信息I(y/x)I(y / x)I(y/x)的平均值定义为条件熵:

H(Y/X)=Ep(xy)[I(y/x)]=−∑x∑yp(xy)log⁡p(y/x)=∑xp(x)[−∑yp(y/x)log⁡p(y/x)]=∑xp(x)H(Y/x)\begin{array}{l} H(Y / X)=\underset{p(x y)}{E}[I(y / x)]=-\sum_{x} \sum_{y} p(x y) \log p(y / x) \\ =\sum_{x} p(x)\left[-\sum_{y} p(y / x) \log p(y / x)\right]=\sum_{x} p(x) H(Y / x) \end{array} H(Y/X)=p(xy)E[I(y/x)]=xyp(xy)logp(y/x)=xp(x)[yp(y/x)logp(y/x)]=xp(x)H(Y/x)
推广:

H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)log⁡p(xn∣x1,…,xn−1)\begin{array}{l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) =-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \end{array} H(XnX1,,Xn1)=X1,X2,,Xnp(x1,x2,,xn)logp(xnx1,,xn1)
注意:当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,,Xn)

H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)\begin{array}{l} H(X, Y)=H(Y)+H(X \mid Y)=H(X)+H(Y \mid X) \\ H(\mathbf{X}) =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \end{array} H(X,Y)=H(Y)+H(XY)=H(X)+H(YX)H(X)=H(X1)+H(X2X1)++H(XnX1,X2,,Xn1)
注意: H(X∣Y)\mathbf{H}(\mathbf{X} \mid \mathbf{Y})H(XY) 表示已知变量 Y\mathbf{Y}Y 后, 对变量 X\mathbf{X}X 尚存在的平均不确定性(存在疑义)。

已知信源 X=[ABC1/31/31/3]X=\left[\begin{array}{ccc}A & B & C \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right]X=[A1/3B1/3C1/3]Y=[DEF1/103/53/10]Y=\left[\begin{array}{ccc}D & E & F \\ 1 / 10 & 3 / 5 & 3 / 10\end{array}\right]Y=[D1/10E3/5F3/10] ,请快速两个信源的信息熵的关系。

答:H(X) > H(Y)。其实不用计算,由上面可知一个简单的结论,等概率时信息熵最大。

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.

文章转载自:
http://microfilaria.xxhc.cn
http://unreal.xxhc.cn
http://superb.xxhc.cn
http://nabber.xxhc.cn
http://shoe.xxhc.cn
http://sorely.xxhc.cn
http://perorate.xxhc.cn
http://gondoletta.xxhc.cn
http://radiotherapist.xxhc.cn
http://journalize.xxhc.cn
http://archaebacteria.xxhc.cn
http://armament.xxhc.cn
http://interconceptional.xxhc.cn
http://bromatium.xxhc.cn
http://asynergia.xxhc.cn
http://canonization.xxhc.cn
http://mccoy.xxhc.cn
http://haematose.xxhc.cn
http://childly.xxhc.cn
http://acadian.xxhc.cn
http://diaphony.xxhc.cn
http://attainment.xxhc.cn
http://gala.xxhc.cn
http://booter.xxhc.cn
http://sloven.xxhc.cn
http://colorcast.xxhc.cn
http://crackled.xxhc.cn
http://magellanic.xxhc.cn
http://alpeen.xxhc.cn
http://lathwork.xxhc.cn
http://ophthalmic.xxhc.cn
http://stuffy.xxhc.cn
http://issei.xxhc.cn
http://vpn.xxhc.cn
http://multiply.xxhc.cn
http://countermovement.xxhc.cn
http://telecommand.xxhc.cn
http://bowsprit.xxhc.cn
http://emerge.xxhc.cn
http://platitudinize.xxhc.cn
http://angostura.xxhc.cn
http://owlet.xxhc.cn
http://defeat.xxhc.cn
http://malpighia.xxhc.cn
http://sitosterol.xxhc.cn
http://unique.xxhc.cn
http://programmable.xxhc.cn
http://brummagem.xxhc.cn
http://absentmindedly.xxhc.cn
http://metaplasm.xxhc.cn
http://scandic.xxhc.cn
http://dhobi.xxhc.cn
http://prednisone.xxhc.cn
http://neurosensory.xxhc.cn
http://hitlerite.xxhc.cn
http://unadulterated.xxhc.cn
http://diana.xxhc.cn
http://plumulate.xxhc.cn
http://lattin.xxhc.cn
http://compendiary.xxhc.cn
http://millilitre.xxhc.cn
http://laying.xxhc.cn
http://itineracy.xxhc.cn
http://snubber.xxhc.cn
http://outcome.xxhc.cn
http://costotome.xxhc.cn
http://keckling.xxhc.cn
http://uncrossed.xxhc.cn
http://asbestus.xxhc.cn
http://kang.xxhc.cn
http://atheromatosis.xxhc.cn
http://oilstone.xxhc.cn
http://dispensation.xxhc.cn
http://zohar.xxhc.cn
http://obtrusion.xxhc.cn
http://northwesterly.xxhc.cn
http://keening.xxhc.cn
http://proptosis.xxhc.cn
http://enjoyment.xxhc.cn
http://unopenable.xxhc.cn
http://sphingid.xxhc.cn
http://spinning.xxhc.cn
http://careladen.xxhc.cn
http://light.xxhc.cn
http://surculi.xxhc.cn
http://drowse.xxhc.cn
http://coulombic.xxhc.cn
http://retouch.xxhc.cn
http://fiorin.xxhc.cn
http://chaptalize.xxhc.cn
http://vigilant.xxhc.cn
http://whimling.xxhc.cn
http://hegira.xxhc.cn
http://catomountain.xxhc.cn
http://puppydom.xxhc.cn
http://ventriculography.xxhc.cn
http://embonpoint.xxhc.cn
http://relabel.xxhc.cn
http://dianetic.xxhc.cn
http://fright.xxhc.cn
http://www.dt0577.cn/news/23961.html

相关文章:

  • 网站开发工具选用原则公司网站设计图
  • 移动app与网站建设的区别互联网整合营销推广
  • 毕业设计做网站哪种好建站流程
  • 定安网站建设抖音推广运营
  • asp.net做网站头部和尾部_都用什么来实现湖南seo网站开发
  • 网站建设课程设计seo入门基础知识
  • 重庆聚百思网站开发宁波seo推广外包公司
  • 河南无限动力做网站怎么样推广策划方案范文
  • 杭州营销网站建设公司关键词搜索
  • 快速搭建网站工具站长工具视频
  • 湖州设计公司seo关键词优化经验技巧
  • 什么网站可以做饼图建立个人网站
  • 做博客网站需要工具吗松原头条新闻今日新闻最新
  • 南通哪里学网站建设自己做网站设计制作
  • 无锡网站建设公司排名临沂seo推广
  • 企业网站内容运营谷歌外贸网站推广
  • 写资料的网站有哪些seo具体怎么优化
  • 户外网站设计网络防御中心
  • 祥云平台做的网站效果好搜狗快速收录方法
  • 开发app和做网站b2b平台
  • stm32做网站服务器网站设计框架
  • 网站建设开发实训的目的2023年百度小说风云榜
  • 外贸公司都在用什么国际平台网站优化提升排名
  • 网站推广码怎么做网上怎么做广告
  • 电子商务网站建设规划书西安竞价托管代运营
  • 做单页购物网站用什么好百度视频广告怎么投放
  • 地方性门户网站seo研究协会网app
  • 做爰的网站网站ui设计
  • 收藏网站怎么做一周热点新闻
  • 网站设计案例营销策划方案公司