当前位置: 首页 > news >正文

自己做网站怎么别人怎么浏览电话销售怎么找客户渠道

自己做网站怎么别人怎么浏览,电话销售怎么找客户渠道,沈阳有资质做网站的公司,全国物流网站再探Tensor类&#xff1a; 第二节中我们编写的Tensor类其实并不能满足我们的使用需要&#xff0c;我们将在这一节以代码阅读的方式来看看一个完全版本的Tensor应该具备怎样的要素&#xff0c;同时我们对Tensor类的分析来看看在C中一个设计好的类应该是怎么样的。 Tensor<fl…

再探Tensor类:

第二节中我们编写的Tensor类其实并不能满足我们的使用需要,我们将在这一节以代码阅读的方式来看看一个完全版本的Tensor应该具备怎样的要素,同时我们对Tensor类的分析来看看在C++中一个设计好的类应该是怎么样的。

Tensor<float>::Tensor(uint32_t channels, uint32_t rows, uint32_t cols) {data_ = arma::fcube(rows, cols, channels);if (channels == 1 && rows == 1) {this->raw_shapes_ = std::vector<uint32_t>{cols};} else if (channels == 1) {this->raw_shapes_ = std::vector<uint32_t>{rows, cols};} else {this->raw_shapes_ = std::vector<uint32_t>{channels, rows, cols};}
}

在这里,raw_shape记录的是另外一个方面的形状信息,主要用于reviewflatten层中。

举一个简单的例子,当Tensor将一个大小为(2,16,1)的Tensor reshape到(32,1,1)的大小时,raw_shapes变量会被记录成(32). 将一个大小为(2,16, 2)的Tensor reshape到(2, 64)的大小时,raw_shapes会被记录成(2,64).

那这样做的目的是什么呢?原来的Tensor不能在逻辑上区分当前的张量是三维的、二维的还是一维的,因为实际的数据存储类arma::fcube总是一个三维数据。所以我们要区分他的逻辑结构,就需要这么一个raw_shape

列优先的Reshape

void Tensor<float>::ReRawshape(const std::vector<uint32_t>& shapes) {CHECK(!this->data_.empty());CHECK(!shapes.empty());const uint32_t origin_size = this->size();uint32_t current_size = 1;for (uint32_t s : shapes) {current_size *= s;}CHECK(shapes.size() <= 3);CHECK(current_size == origin_size);if (shapes.size() == 3) {this->data_.reshape(shapes.at(1), shapes.at(2), shapes.at(0));this->raw_shapes_ = {shapes.at(0), shapes.at(1), shapes.at(2)};} else if (shapes.size() == 2) {this->data_.reshape(shapes.at(0), shapes.at(1), 1);this->raw_shapes_ = {shapes.at(0), shapes.at(1)};} else {this->data_.reshape(shapes.at(0), 1, 1);this->raw_shapes_ = {shapes.at(0)};}
}

我们再来分析一下这个函数,如果传入的shapes是1维的,就相当于将数据展开为(elem_size,1,1),并将逻辑维度赋值为1. 如果传入的shapes,相当于将数据展开为(shapes.at(0), shapes.at(1), 1). 我们来看看下面的这个图例:

如果把上面的(2,2,3)展平为一维的,那就应该是如下图所示:

 而且这也是arma:cube的默认排序(列排序)

行优先的Reshape

那如果我们在某些情况下需要行优先的Reshape呢?

void Tensor<float>::ReView(const std::vector<uint32_t>& shapes) {CHECK(!this->data_.empty());const uint32_t target_channels = shapes.at(0);const uint32_t target_rows = shapes.at(1);const uint32_t target_cols = shapes.at(2);arma::fcube new_data(target_rows, target_cols, target_channels);const uint32_t plane_size = target_rows * target_cols;for (uint32_t c = 0; c < this->data_.n_slices; ++c) {const arma::fmat& channel = this->data_.slice(c);for (uint32_t c_ = 0; c_ < this->data_.n_cols; ++c_) {const float* colptr = channel.colptr(c_);for (uint32_t r = 0; r < this->data_.n_rows; ++r) {const uint32_t pos_index =c * data_.n_rows * data_.n_cols + r * data_.n_cols + c_;const uint32_t ch = pos_index / plane_size;const uint32_t row = (pos_index - ch * plane_size) / target_cols;const uint32_t col = (pos_index - ch * plane_size - row * target_cols);new_data.at(row, col, ch) = *(colptr + r);}}}this->data_ = new_data;
}

我们只能通过位置计算的方式来对逐个元素进行搬运,const uint32_t plane_size = target_rows * target_cols;来计算行数和列数相乘的积。

const uint32_t pos_index = c * data_.n_rows * data_.n_cols + r * data_.n_cols + c_; 得 到调整前的元素下标,随后我们计算调整后的通道下标位置:ch = pos_index / plane_size,plane_size就是和一面,一行乘一列。同理计算row,col等调整位置后的行、列坐标。


计算图关系

内容回顾

我们在回顾一下之前的内容,我们根据pnnx计算图得到了我们的计算图,我们的计算图由两部分组成,分别是kuiper_infer::RuntimeOperatorkuier_infer::RuntimeOperand.

但是作为一个计算图,计算节点之间往往是有连接的,包括从input operator到第一个计算节点再到第二个计算节点,直到最后的输出节点output operator,我们再来回顾一下这两个数据结构的具体定义:

struct RuntimeOperator {int32_t meet_num = 0; /// 计算节点被相连接节点访问到的次数~RuntimeOperator() {for (auto &param : this->params) {if (param.second != nullptr) {delete param.second;param.second = nullptr;}}}std::string name; /// 计算节点的名称std::string type; /// 计算节点的类型std::shared_ptr<Layer> layer; /// 节点对应的计算Layerstd::vector<std::string> output_names; /// 节点的输出节点名称std::shared_ptr<RuntimeOperand> output_operands; /// 节点的输出操作数std::map<std::string, std::shared_ptr<RuntimeOperand>> input_operands; /// 节点的输入操作数std::vector<std::shared_ptr<RuntimeOperand>> input_operands_seq; /// 节点的输入操作数,顺序排列std::map<std::string, std::shared_ptr<RuntimeOperator>> output_operators; /// 输出节点的名字和节点对应std::map<std::string, RuntimeParameter *> params;  /// 算子的参数信息std::map<std::string, std::shared_ptr<RuntimeAttribute> > attribute; /// 算子的属性信息,内含权重信息
};
  1. std::map<:string std::shared_ptr>> output_operators; 我们重点来看这个定义,它是当前这个计算节点的下一个计算节点,当数据在当前RuntimeOperator上计算完成之后,系统会读取output_operators中准备就绪的算子并开始执行。
  2. std::map<:string std::shared_ptr>> input_operands; 是当前计算节点所需要的输入,它往往来自于上一个RuntimeOperator的输入。
  3. std::shared_ptr output_operands; 是当前节点计算得到的输出,它是通过当前的op计算得到的。

具体的流程是这样的,假设我们在系统中有三个RuntimeOperators,分别为op1,op2op3. 这三个算子的顺序是依次执行的,分别是op1-->op2-->op3.

  • 当我们执行第一个算子op1的时候,需要将来自于图像的输入填充到op1->input_operands中。
  • 第一个算子op1开始执行,执行的过程中读取op1->input_operands并计算得到相关的输出,放入到op1->output_operands
  • op1output_operators中读取到ready的op2
  • 第二个算子op2开始执行,执行的过程读取op1->output_operands并拷贝op2->input_operands中,随后op2算子开始执行并计算得到相关的输出,放入到op2->output_operands中。

所以我们可以看到者之间是有一个图关系的,那我们来看一下他是怎么构建这样一个图关系的

怎样构建图关系:

/ 构建图关系for (const auto &current_op : this->operators_) {const std::vector<std::string> &output_names = current_op->output_names;for (const auto &next_op : this->operators_) {if (next_op == current_op) {continue;}if (std::find(output_names.begin(), output_names.end(), next_op->name) !=output_names.end()) {current_op->output_operators.insert({next_op->name, next_op});}}}```-  **const std::vector\<std::string> &output_names = current_op->output_names;** 存放的是当前`op`的`output_names`,`output_names`也就是当前算子的后一层算子的名字。对于`op1`,它的`output_names`就是`op2`的name.- **const auto &next_op : this->operators_**  我们遍历整个图中的`RuntimeOperators`,如果遇到`next_op`的name和当前`current_op->output_name`是一致的,那么我们就可以认为`next_op`是当前`op`的下一个节点之一。- **current_op->output_operators.insert({next_op->name, next_op});** 将`next_op`插入到`current_op`的下一个节点当中。- 这样一来,当`current_op`执行完成之后就取出`next_op`,并将当前`current_op`的输出`output_opends`(输出)拷贝到`next_op`的`input_operands`(输入)中。

因为在初始化的时候就已经约定好了op1的输出是op2,所以只要在接下来的点中不停地寻找op2就好了,找到了之后就把它insert到output_operators里面.这个output_operators是一个map,就可以让输出节点的名字和节点对应。

这么一个计算图也得有输入输出节点吧

作者:傅大狗
链接:https://zhuanlan.zhihu.com/p/604613883
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

  this->input_operators_maps_.clear();this->output_operators_maps_.clear();for (const auto &kOperator : this->operators_) {if (kOperator->type == "pnnx.Input") {this->input_operators_maps_.insert({kOperator->name, kOperator});} else if (kOperator->type == "pnnx.Output") {if (kOperator->name == output_name) {this->output_operators_maps_.insert({kOperator->name, kOperator});} else {LOG(FATAL) << "The graph has two output operator!";}} else {std::shared_ptr<Layer> layer = RuntimeGraph::CreateLayer(kOperator);CHECK(layer != nullptr) << "Layer create failed!";if (layer) {kOperator->layer = layer;}}}
  • kOperator->type == "pnnx.Output" 找到this->operators中的输出节点,但是目前Kuiperinfer只支持一个输出节点,其实也可以多输出,作为一个教学框架我实在不想支持这种corner case
  • 同理: kOperator->type == "pnnx.Input" 来找到图中,也就是op list中的输入节点

就是在op3结束之后,我们还要把op3的output_operand复制到输出节点的input_operand里面
 

初始化输入

struct RuntimeOperand {std::string name;                                     /// 操作数的名称std::vector<int32_t> shapes;                          /// 操作数的形状std::vector<std::shared_ptr<Tensor<float>>> datas;    /// 存储操作数 为什么是vector,因为是一个batch,如果batch是2的话,那就存储的是两个RuntimeDataType type = RuntimeDataType::kTypeUnknown; /// 操作数的类型,一般是float
};

可以看到这里的RuntimeOperand::datas就是存储具体数据的地方,我们初始化输入输出的空间也就是要在推理之前先根据shapes来初始化好这里datas的空间

代码位于runtime_ir.cppInitOperatorInputTensorRuntimeGraphShape::InitOperatorInputTensor(operators_) 这个函数的输入是operator list, 所以将在这个函数中对所有的op进行输入和输出空间的初始化。

  • 得到一个op的输入空间input_operands
const std::map<std::string, std::shared_ptr<RuntimeOperand>> &input_operands_map = op->input_operands;
  • 如果初始的是空就continue
for (const auto &op : operators) {if (op->input_operands.empty()) {continue;} 

  • 得到input_operands中记录的数据应有大小input_operand_shape和存储数据的变量input_datas
auto &input_datas = input_operand->datas;CHECK(!input_operand_shape.empty());
const int32_t batch = input_operand_shape.at(0);
CHECK(batch >= 0) << "Dynamic batch size is not supported!";
CHECK(input_operand_shape.size() == 2 ||input_operand_shape.size() == 4 ||input_operand_shape.size() == 3)
  • 我们需要根据input_operand_shape中记录的大小去初始化input_datas. 而input_operand_shape可能是三维的,二维的以及一维的,如下方所示
  • input_operand_shape : (batch, elemsize) 一维的
  • input_operand_shape : (batch, rows,cols) 二维的
  • input_operand_shape : (batch, rows,cols, channels) 三维的

如果当前input_operand_shape是二维的数据,也就是说输入维度是(batch,rows,cols)的. 我们首先对batch进行遍历,对一个batch的中的数据input_datas= op->input_operand(输入)进行初始化。

input_datas.resize(batch);
for (int32_t i = 0; i < batch; ++i) {
}

for循环内,它会调用如下的方法去初始化一个二维的张量:

input_datas.at(i) = std::make_shared<Tensor<float>>(1, input_operand_shape.at(1), input_operand_shape.at(2));

这一块不太清楚,我们实际代码看一遍:

          for (int32_t i = 0; i < batch; ++i) {if (input_operand_shape.size() == 4) {input_datas.at(i) = std::make_shared<Tensor<float>>(input_operand_shape.at(1), input_operand_shape.at(2),input_operand_shape.at(3));

也就是如果是shape == 4 , 那就是三维的,那么1就是channel,2就是row,3就是col

那么如果输入的channel == 1,或者row == 1

Tensor<float>::Tensor(uint32_t channels, uint32_t rows, uint32_t cols) {data_ = arma::fcube(rows, cols, channels);if (channels == 1 && rows == 1) {this->raw_shapes_ = std::vector<uint32_t>{cols};} else if (channels == 1) {this->raw_shapes_ = std::vector<uint32_t>{rows, cols};} else {this->raw_shapes_ = std::vector<uint32_t>{channels, rows, cols};}
}

那就正好被初始化为了我们之前的raw_shape 这样的一个逻辑维度

这就和我们上面的课程内容对应上了,Tensor<float>原本是一个三维数据,我们怎么在逻辑上给他表现成一个二维的张量呢?这就要用到我们上面说到的raw_shapes了。

  • 调用并初始化一维的数据也同理, 在初始化的过程中会调用(channels==1&&rows==1) 这个条件判断,并将raw_shapes这个维度定义成一维。
input_datas.at(i) = std::make_shared<Tensor<float>>(1, input_operand_shape.at(1), 1)

避免第二次初始化

那么在计算的过程中,我们只需要一次初始化就可以。

所以在第二次遇到她的时候,只需要去检查空间是否发生改变就可以啦

  if (!input_datas.empty()) {CHECK(input_datas.size() == batch) << "Batch size is wrong!";for (int32_t i = 0; i < batch; ++i) {const std::vector<uint32_t> &input_data_shape =input_datas.at(i)->shapes();CHECK(input_data_shape.size() == 3)<< "THe origin shape size of operator input data do not equals ""to three";if (input_operand_shape.size() == 4) {CHECK(input_data_shape.at(0) == input_operand_shape.at(1) &&input_data_shape.at(1) == input_operand_shape.at(2) &&input_data_shape.at(2) == input_operand_shape.at(3));} else if (input_operand_shape.size() == 2) {CHECK(input_data_shape.at(1) == input_operand_shape.at(1) &&input_data_shape.at(0) == 1 && input_data_shape.at(2) == 1);} else {// current shape size = 3CHECK(input_data_shape.at(1) == input_operand_shape.at(1) &&input_data_shape.at(0) == 1 &&input_data_shape.at(2) == input_operand_shape.at(2));}}} 
              CHECK(input_data_shape.at(0) == input_operand_shape.at(1) &&input_data_shape.at(1) == input_operand_shape.at(2) &&input_data_shape.at(2) == input_operand_shape.at(3));

上面这一部分,左边是我们实际有的shape,也就是我们第一次初始化的shape,而右边的是我们再次遇到的时候应该具有的shape,所以这一次就是check这两个shape是否一致,如果check不通过,那就代表输入空间的大小被改变了。那这样的话就会报错,退出这个程序

示例:

 

 

 

 这里的conv的输出分别是1和2

expression就接受了1和2为输入

最近在忙老师布置的任务,就耽误了这方面的进度,慢慢补把

http://www.dt0577.cn/news/133.html

相关文章:

  • 广州网站建设推广报价江苏营销型网站建设
  • 中国各省旅游网站建设分析百度广告费用
  • 简历上作品展示网站链接怎么做网站自动推广软件免费
  • wordpress 企业网站制作google关键词指数
  • 如何设计出一个好网站教育培训机构官网
  • 如何做一个论坛网站雏鸟app网站推广
  • 视频教学网站cms武汉网站推广
  • 南京华典建设有限公司网站鹤壁seo公司
  • 实训课建设网站步骤优化大师最新版本
  • pc网站同步手机网站seo排名优化公司
  • 网站迁移教程网络推广哪个平台好
  • 商务网站建设中的必备功能培训体系搭建
  • 做外贸到什么网站上发布比较好企业宣传软文
  • 网站全能空间网站seo优化运营
  • 当牛做吗网站源代码分享百度云地推网app推广平台
  • 温州市城建设计院网站平面设计正规培训机构
  • 庞各庄网站建设网站怎么添加外链
  • 自己建设网站平台步骤百度站长统计
  • 电子商务网站建设是学什么软件新冠疫情最新数据
  • 广州建站苏州网站建设方案
  • 店铺logo图片免费生成器兰州网站seo服务
  • 合肥做网站的企业seo网络优化是做什么的
  • 浅析我国门户网站建设不足国外seo工具
  • 做淘宝客没网站怎么做电商网站平台有哪些
  • 建设银行面试通知网站惠州seo计费管理
  • 注册域名能干什么百度seo咋做
  • 朝阳网站制作上海seo网站策划
  • wordpress推荐php版本整站seo外包
  • 学软件技术可以从事什么工作seo网站诊断流程
  • 毕业设计2网站建设信息流广告怎么投放