当前位置: 首页 > news >正文

idc 网站备案限制百度账户代运营

idc 网站备案限制,百度账户代运营,私自做彩票网站代购犯法么,想开一家相亲网站 怎么做### 逻辑回归的损失函数 逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为: \[ P(y 1 | x) \frac{1}{1 e^{-F(x)}} \] 其中 \( F(x) \) 是一个线性组合函数,通常表示为&#xff…

### 逻辑回归的损失函数

逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:

\[ P(y = 1 | x) = \frac{1}{1 + e^{-F(x)}} \]

其中 \( F(x) \) 是一个线性组合函数,通常表示为:

\[ F(x) = \sum_{m=0}^{M} h_m(x) \]

这里的 \( h_m(x) \) 是学习到的决策树。

### 损失函数的推导

对于单个样本 \((x_i, y_i)\),逻辑回归的损失函数通常采用对数似然损失(也称为交叉熵损失),定义如下:

\[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]

其中:
- \( \hat{y}_i \) 是模型预测的概率。
- \( y_i \) 是实际的标签(0 或 1)。

### GBDT 中的损失函数

在 GBDT 中,我们假设第 \( k \) 步迭代之后当前学习器为 \( F(x) \),则损失函数可以写为:

\[ \text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

### 推导步骤

1. **定义预测概率**:
   \[ \hat{y}_i = \frac{1}{1 + e^{-F(x_i)}} \]

2. **代入损失函数**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-F(x_i)}}\right) \]

3. **简化表达式**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(\frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}\right) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[\log(e^{-F(x_i)}) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[-F(x_i) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

求梯度

为了求出给定损失函数的梯度,我们需要对损失函数关于 \( F(x_i) \) 求导。给定的损失函数是:

\[
\text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right]
\]

我们分两部分来计算梯度:

1. 对于第一部分 \( y_i \log \left(1 + e^{-F(x_i)}\right) \)
2. 对于第二部分 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \)

### 第一部分的梯度

对于 \( y_i \log \left(1 + e^{-F(x_i)}\right) \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right]
\]

使用链式法则:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right] = y_i \cdot \frac{\partial}{\partial F(x_i)} \left[ \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= y_i \cdot \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)})
\]

\[
= y_i \cdot \frac{-e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

### 第二部分的梯度

对于 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ (1 - y_i) \left(F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{\partial}{\partial F(x_i)} F(x_i) + \frac{\partial}{\partial F(x_i)} \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 + \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)}) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 - \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1 + e^{-F(x_i)} - e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1}{1 + e^{-F(x_i)}} \right]
\]

### 合并两部分

将两部分合并起来:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \right]
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + (1 - y_i) \cdot \frac{1}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + \frac{1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{-y_i e^{-F(x_i)} + 1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

最终得到的梯度为:

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

简化

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1}{1 + e^{-F(x_i)}} - y_i
\]

### 总结

通过上述推导,我们可以看到逻辑回归的损失函数如何被应用于 GBDT 中。在每一步迭代中,GBDT 会根据当前模型的预测和实际标签之间的差异来更新新的弱学习器(通常是决策树),从而逐步减少损失函数的值。

这个过程确保了模型能够逐步逼近最优解,同时通过负梯度方向进行参数更新,有效地减少了损失函数的值。

http://www.dt0577.cn/news/12605.html

相关文章:

  • 京东seo搜索优化seo点击软件手机
  • 网站做外链的技巧2022年十大网络流行语发布
  • 杭州建设网站网址申请注册
  • 济南专门做网站的公司百度经验首页官网
  • 资阳做网站1+x网店运营推广
  • 网站首页页脚设计培训课程网站
  • cco网站素材电脑版百度网盘
  • bl 做视频网站有哪些免费网站可以发布广告
  • 北京市网站制作设计谷歌google地图
  • 福州网站制作设计拉新项目官方一手平台
  • 网站分析总结重庆店铺整站优化
  • 企业网站代码模板安卓优化软件
  • 孝感网站建设孝感搜收录网
  • wordpress 仿小米优化大师官网登录入口
  • 厦门做网站个人推广文案范例
  • 网站里面的链接怎么做的yande搜索引擎官网入口
  • 网站建设易网宣seo北京公司
  • 全国城市雕塑建设指导委员会网站头条站长平台
  • 绿色门业宽屏网站模板 破解宁波网站建设推广公司价格
  • 找做企业网站百度认证考试
  • 秦皇岛手机网站制作关键词排名怎样
  • 网站代运营要多少费用郑州seo软件
  • 嘉兴做微网站seo网络推广方法
  • 一家专业做家谱的网站线下引流推广方法
  • 漳州做网站多少钱网站排名点击工具
  • 厅门户网站建设国内营销推广渠道
  • 网站建设成本分析1688精品货源网站入口
  • 怎么做网址导航网站栾城seo整站排名
  • 响应式网站用什么工具做网站如何做seo推广
  • 那个网站可教做课件好灰色项目推广渠道