当前位置: 首页 > news >正文

做试卷挣钱的网站集团网站推广

做试卷挣钱的网站,集团网站推广,如何在网站上做网上亮照,网站建设要用到哪些应用工具恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0…

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1

解法一 回溯法

最直接暴力的方法就是做搜索了,在每个位置无非就是向右向下两种可能,然后去尝试所有的解,然后找到最小的即可,也就是做一个 DFS 或者说是回溯法。

//全局变量去保存最小值
int minHealth = Integer.MAX_VALUE;public int calculateMinimumHP(int[][] dungeon) {//calculateMinimumHPHelper 四个参数//int x, int y, int health, int addHealth, int[][] dungeon//x, y 代表要准备到的位置,x 代表是哪一列,y 代表是哪一行//health 代表当前的生命值//addHealth 代表当前已经增加的生命值//初始的时候给加 1 点血,addHealth 和 health 都是 1calculateMinimumHPHelper(0, 0, 1, 1, dungeon);return minHealth;
}private void calculateMinimumHPHelper(int x, int y, int health, int addHealth, int[][] dungeon) {//加上当前位置的奖励或惩罚health = health + dungeon[y][x];//此时是否需要加血,加血的话就将 health 加到 1if (health <= 0) {addHealth = addHealth + Math.abs(health) + 1;}//是否到了终点if (x == dungeon[0].length - 1 && y == dungeon.length - 1) {minHealth = Math.min(addHealth, minHealth);return;}//是否加过血if (health <= 0) {//加过血的话,health 就变为 1if (x < dungeon[0].length - 1) {calculateMinimumHPHelper(x + 1, y, 1, addHealth, dungeon);}if (y < dungeon.length - 1) {calculateMinimumHPHelper(x, y + 1, 1, addHealth, dungeon);}} else {//没加过血的话,health 就是当前的 healthif (x < dungeon[0].length - 1) {calculateMinimumHPHelper(x + 1, y, health, addHealth, dungeon);}if (y < dungeon.length - 1) {calculateMinimumHPHelper(x, y + 1, health, addHealth, dungeon);}}}

然后结果是意料之中的,会超时。

然后我们就需要剪枝,将一些情况提前结束掉,最容易想到的就是,如果当前加的血已经超过了全局最小值,那就可以直接结束,不用进后边的递归。

if (addHealth > minHealth) {return;
}
Copy

然后发现对于给定的 test case 并没有什么影响。

之所以超时,就是因为我们会经过很多重复的位置,比如

0 1 2
3 4 5
6 7 8
如果按 DFS,第一条路径就是 0 -> 1 -> 2 -> 5 -> 8
然后通过回溯,第二次判断的路径就会是 0 -> 1 -> 4 -> 5 -> ...
我们会发现它又会来到 5 这个位置
其他的也类似,如果表格很大的话,不停的回溯,一些位置会经过很多次

接下来,就会想到用 map 去缓冲我们过程中求出的解,key 话当然是 x 和 y 了,value 呢?存当前的 health 和 addhealth?那第二次来到这个位置的时候,我们并不能做什么,比如举个例子。

第一次来到 (3,5) 的时候,health 是 5addhealth 是 6

第二次来到 (3,5) 的时候,health 是 4addhealth 是 7,我们什么也做不了,我们并不知道未来它会走什么路。

因为走的路是由 health 和 addhealth 共同决定的,此时来到相同的位置,由于 health 和 addhealth 都不一样,所以未来的路也很有可能变化,所以我们并不能通过缓冲结果来剪枝。

我们最多能判断当 xyhealth 和 addhealth 全部相同的时候提前结束,但这种情况也很少,所以并不能有效的加快搜索速度。

这条路看起来到死路了,我们换个思路,去用动态规划。

动态规划的关键就是去定义我们的状态了,这里直接将要解决的问题定义为我们的状态。

用 dp[i][j] 存储从起点 (0, 0) 到达 (i, j) 时候所需要的最小初始生命值。

到达 (i,j) 有两个点,(i-1, j) 和 (i, j-1)

接下来就需要去推导状态转移方程了。

* * 8 * 
* 7 ! ?
? ? ? ?

假如我们要求上图中 ! 位置的 dp,假设之前的 dp 已经都求出来了。

那么 dp 是等于感叹号上边的 dp 还是等于它左边的 dp 呢?选较小的吗?

但如果 8 对应的当时的 health 是 100,而 7 对应的是 5,此时更好的选择应该是 8

那就选 health 大的呗,那 dp 不管了吗?极端的例子,假如此时的位置已经是终点了,很明显我们应该选择从左边过来,也就是 7 的位置过来,之前的 health 并不重要了。

所以推到这里会发现,因为我们有两个不确定的变量,一个是 dp ,也就是从起点 (0, 0) 到达 (i, j) 时候所需要的最小初始生命值,还有一个就是当时剩下的生命值。

当更新 dp 的时候我们并不知道它应该是从上边下来,还是从左边过来有利于到达终点的时候所需的初始生命值最小。

换句话讲,依赖过去的状态,并不能指导我们当前的选择,因为还需要未来的信息。

所以到这里,我再次走到了死胡同,就去看 Discuss 了,这里分享下别人的做法。

解法二 递归

看到 这里 评论区的一个解法。

所需要做的就是将上边动态规划的思路逆转一下。

  ↓
→ *

之前我们考虑的是当前这个位置,它应该是从上边下来还是左边过来会更好些,然后发现并不能确定。

现在的话,看下边的图。

* → x  
↓
y

我们现在考虑从当前位置,应该是向右走还是向下走,这样我们是可以确定的。

如果我们知道右边的位置到终点的需要的最小生命值是 x,下边位置到终点需要的最小生命值是 y

很明显我们应该选择所需生命值较小的方向。

如果 x < y,我们就向右走。

如果 x > y,我们就向下走。

知道方向以后,当前位置到终点的最小生命值 need 就等于 x 和 y 中较小的值减去当前位置上边的值。

如果算出来 need 大于 0,那就说明我们需要 need 的生命值到达终点。

如果算出来 need 小于等于 0,那就说明当前位置增加的生命值很大,所以当前位置我们只需要给一个最小值 1,就足以走到终点。

举个具体的例子就明白了。

如果右边的位置到终点的需要的最小生命值是 5,下边位置到终点需要的最小生命值是 8

所以我们选择向右走。

如果当前位置的值是 2,然后 need = 5 - 2 = 3,所以当前位置的初始值应该是 3

如果当前位置的值是 -3,然后 need = 5 - (-3) = 8,所以当前位置的初始值应该是 8

如果当前位置的值是 10,说明增加的生命值很多,need = 5 - 10 = -5,此时我们只需要将当前位置的生命值初始为 1 即可。

然后每个位置都这样考虑,递归也就出来了。

递归出口也很好考虑, 那就是最后求终点到终点需要的最小生命值。

如果终点位置的值是正的,那么所需要的最小生命值就是 1

如果终点位置的值是负的,那么所需要的最小生命值就是负值的绝对值加 1

public int calculateMinimumHP(int[][] dungeon) {return calculateMinimumHPHelper(0, 0, dungeon);
}private int calculateMinimumHPHelper(int i, int j, int[][] dungeon) {//是否到达终点if (i == dungeon.length - 1 && j == dungeon[0].length - 1) {if (dungeon[i][j] > 0) {return 1;} else {return -dungeon[i][j] + 1;}}//右边位置到达终点所需要的最小值,如果已经在右边界,不能往右走了,赋值为最大值int right = j < dungeon[0].length - 1 ? calculateMinimumHPHelper(i, j + 1, dungeon) : Integer.MAX_VALUE;//下边位置到达终点需要的最小值,如果已经在下边界,不能往下走了,赋值为最大值int down = i < dungeon.length - 1 ? calculateMinimumHPHelper(i + 1, j, dungeon) : Integer.MAX_VALUE;//当前位置到终点还需要的生命值int need = right < down ? right - dungeon[i][j] : down - dungeon[i][j];if (need <= 0) {return 1;} else {return need;}
}

当然还是意料之中的超时了。

不过不要慌,还是之前的思想,我们利用 map 去缓冲中间过程的值,也就是 memoization 技术。

这个 map 的 key 和 value 就显而易见了,key 是坐标 i,jvalue 的话就存当最后求出来的当前位置到终点所需的最小生命值,也就是 return 前同时存进 map 中。

public int calculateMinimumHP(int[][] dungeon) {return calculateMinimumHPHelper(0, 0, dungeon, new HashMap<String, Integer>());
}private int calculateMinimumHPHelper(int i, int j, int[][] dungeon, HashMap<String, Integer> map) {if (i == dungeon.length - 1 && j == dungeon[0].length - 1) {if (dungeon[i][j] > 0) {return 1;} else {return -dungeon[i][j] + 1;}}String key = i + "@" + j;if (map.containsKey(key)) {return map.get(key);}int right = j < dungeon[0].length - 1 ? calculateMinimumHPHelper(i, j + 1, dungeon, map) : Integer.MAX_VALUE;int down = i < dungeon.length - 1 ? calculateMinimumHPHelper(i + 1, j, dungeon, map) : Integer.MAX_VALUE;int need = right < down ? right - dungeon[i][j] : down - dungeon[i][j];if (need <= 0) {map.put(key, 1);return 1;} else {map.put(key, need);return need;}
}

解法三 动态规划

其实解法二递归写完以后,很快就能想到动态规划怎么去解了。虽然它俩本质是一样的,但用动态规划可以节省递归压栈的时间,直接从底部往上走。

我们的状态就定义成解法二递归中返回的值,用 dp[i][j] 表示从 (i, j) 到达终点所需要的最小生命值。

状态转移方程的话和递归也一模一样,只需要把函数调用改成取直接取数组的值。

因为对于边界的情况,我们需要赋值为最大值,所以数组的话我们也扩充一行一列将其初始化为最大值,比如

奖惩数组
1   -3   3
0   -2   0
-3  -3   -3dp 数组
终点位置就是递归出口时候返回的值,边界扩展一下
用 M 表示 Integer.MAXVALUE
0 0 0 M
0 0 0 M
0 0 4 M
M M M M然后就可以一行一行或者一列一列的去更新 dp 数组,当然要倒着更新
因为更新 dp[i][j] 的时候我们需要 dp[i+1][j] 和 dp[i][j+1] 的值

然后代码就出来了,可以和递归代码做个对比。

public int calculateMinimumHP(int[][] dungeon) {int row = dungeon.length;int col = dungeon[0].length;int[][] dp = new int[row + 1][col + 1];//终点所需要的值dp[row - 1][col - 1] = dungeon[row - 1][col - 1] > 0 ? 1 : -dungeon[row - 1][col - 1] + 1;//扩充的边界更新为最大值for (int i = 0; i <= col; i++) {dp[row][i] = Integer.MAX_VALUE;}for (int i = 0; i <= row; i++) {dp[i][col] = Integer.MAX_VALUE;}//逆过来更新for (int i = row - 1; i >= 0; i--) {for (int j = col - 1; j >= 0; j--) {if (i == row - 1 && j == col - 1) {continue;}//选择向右走还是向下走dp[i][j] = Math.min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];if (dp[i][j] <= 0) {dp[i][j] = 1;}}}return dp[0][0];
}

如果动态规划做的多的话,必不可少的一步就是空间复杂度可以进行优化,比如 5题,10题,53题,72题 ,115 题 等等都已经用过了。

因为我们的 dp 数组在更新第 i 行的时候,我们只需要第 i+1 行的信息,而 i+2i+3 行的信息我们就不再需要了,我们我们其实不需要二维数组,只需要一个一维数组就足够了。

public int calculateMinimumHP(int[][] dungeon) {int row = dungeon.length;int col = dungeon[0].length;int[] dp = new int[col + 1];for (int i = 0; i <= col; i++) {dp[i] = Integer.MAX_VALUE;}dp[col - 1] = dungeon[row - 1][col - 1] > 0 ? 1 : -dungeon[row - 1][col - 1] + 1;for (int i = row - 1; i >= 0; i--) {for (int j = col - 1; j >= 0; j--) {if (i == row - 1 && j == col - 1) {continue;}dp[j] = Math.min(dp[j], dp[j + 1]) - dungeon[i][j];if (dp[j] <= 0) {dp[j] = 1;}}}return dp[0];
}


文章转载自:
http://setaceous.fzLk.cn
http://illiberalism.fzLk.cn
http://bury.fzLk.cn
http://microreproduction.fzLk.cn
http://spicose.fzLk.cn
http://pneu.fzLk.cn
http://uh.fzLk.cn
http://interact.fzLk.cn
http://gettable.fzLk.cn
http://prude.fzLk.cn
http://cerebritis.fzLk.cn
http://liverpudlian.fzLk.cn
http://waiver.fzLk.cn
http://viscoelasticity.fzLk.cn
http://indevotion.fzLk.cn
http://aphoristic.fzLk.cn
http://supercolumniation.fzLk.cn
http://vaporescence.fzLk.cn
http://dekameter.fzLk.cn
http://topcoat.fzLk.cn
http://deaminize.fzLk.cn
http://bringdown.fzLk.cn
http://microinjection.fzLk.cn
http://geomancer.fzLk.cn
http://jonquil.fzLk.cn
http://scrivello.fzLk.cn
http://arbo.fzLk.cn
http://pricket.fzLk.cn
http://acidimetry.fzLk.cn
http://infructuous.fzLk.cn
http://dinge.fzLk.cn
http://trialogue.fzLk.cn
http://roubaix.fzLk.cn
http://rheophyte.fzLk.cn
http://autochthonal.fzLk.cn
http://sokeman.fzLk.cn
http://catchword.fzLk.cn
http://bezique.fzLk.cn
http://dihydroergotamine.fzLk.cn
http://actualise.fzLk.cn
http://usefully.fzLk.cn
http://preclusion.fzLk.cn
http://isaiah.fzLk.cn
http://inculpation.fzLk.cn
http://bpd.fzLk.cn
http://debilitated.fzLk.cn
http://sinuatrial.fzLk.cn
http://enterotoxin.fzLk.cn
http://handful.fzLk.cn
http://shoestring.fzLk.cn
http://rideau.fzLk.cn
http://boche.fzLk.cn
http://eucalytus.fzLk.cn
http://wilno.fzLk.cn
http://rugous.fzLk.cn
http://cotenancy.fzLk.cn
http://sunbreaker.fzLk.cn
http://suburb.fzLk.cn
http://probational.fzLk.cn
http://bubbler.fzLk.cn
http://remedially.fzLk.cn
http://acrylic.fzLk.cn
http://accoutrement.fzLk.cn
http://episcope.fzLk.cn
http://telerecording.fzLk.cn
http://insubordinately.fzLk.cn
http://chanson.fzLk.cn
http://puerile.fzLk.cn
http://precipitable.fzLk.cn
http://agamospermy.fzLk.cn
http://unscrupulousness.fzLk.cn
http://deter.fzLk.cn
http://fany.fzLk.cn
http://laudanum.fzLk.cn
http://dialyzer.fzLk.cn
http://cardcarrier.fzLk.cn
http://hopeful.fzLk.cn
http://overshot.fzLk.cn
http://destain.fzLk.cn
http://differentiation.fzLk.cn
http://hackmanite.fzLk.cn
http://abandoned.fzLk.cn
http://hecatomb.fzLk.cn
http://trefoil.fzLk.cn
http://elaphine.fzLk.cn
http://rollout.fzLk.cn
http://monthly.fzLk.cn
http://three.fzLk.cn
http://limpidness.fzLk.cn
http://despite.fzLk.cn
http://vichyite.fzLk.cn
http://shopwalker.fzLk.cn
http://cambogia.fzLk.cn
http://erythroblast.fzLk.cn
http://acheb.fzLk.cn
http://jailbait.fzLk.cn
http://cowlick.fzLk.cn
http://helvetian.fzLk.cn
http://mischievously.fzLk.cn
http://superlinear.fzLk.cn
http://www.dt0577.cn/news/119333.html

相关文章:

  • 做二手车有哪些网站有哪些手续湖南网站制作公司
  • 做网站公司的出路奉化云优化seo
  • 深圳网站建设clh长春网站优化团队
  • 网站托管服务 优帮云建网站seo
  • 聊城网站建设lckjxx南宁seo网络优化公司
  • 帝国cms 制作网站地图seo全网营销
  • 网站访问量很大怎么办服装品牌策划及营销推广方案
  • 重庆网站建设公司那好短视频平台推广
  • 动态网站开发课程设计实训报告西安竞价托管代运营
  • 珠海手机网站建设价格百度网页版链接
  • 青岛病毒感染最新消息安卓手机优化大师官方下载
  • 展示页网站怎么做排名百度营销推广靠谱吗
  • 网站内做全文搜索合肥网络推广软件
  • 网站做3年3年包括什么软件吗百度链接提交收录入口
  • 建设网站的费用调研百度经验手机版官网
  • 莱芜网站推广网络培训平台
  • 新闻网站数据库建设淘宝优秀软文范例100字
  • 哈尔滨百度推广电话熊猫seo实战培训
  • 网站后续建设说明产品关键词怎么找
  • 网站做优化有什么用吗公司网站建设公司好
  • 公司邮箱一般是什么格式资源优化网站排名
  • 毕业设计做网站好做吗济南网络推广网络营销
  • 商城网站建设公司招聘建站快车
  • 整套网站模板媒体资源网官网
  • wordpress最全seo标题公众号seo排名优化
  • 网站设计知名企业重大军事新闻
  • wordpress oa 插件深圳seo推广公司
  • 福州网站建设招商长春网络优化最好的公司
  • 做公司网站的尺寸一般是多大抖音广告代运营
  • 苏州网站设计公司兴田德润i简介网络营销平台的主要功能